

Welcome to SKPAR’s documentation!

SKPAR is a parameter-optimisation framework for the
Density Functional Tight-Binding (DFTB) theory.

News

	SKPAR version 0.2.0 released: September 2017

	New Configuration section in input file allows for individual
directory for each model evaluation, i.e. each parameter set.
Be sure to check the relevant part in Input File Reference.

	Strict bounds for PSO particle space, applied per dimension

	Minor bug fixes

	SKPAR version 0.1.0 released: February 2017.

Contents

	About
	Conceptual Overview

	Implementation Overview

	Extensions

	Install
	Dependencies

	Test

	Commands
	skpar

	dftbutils

	Tutorials
	Tutorial 1 – Polynomial Fitting

	Tutorial 2 – Optimisation of electronic parameters in DFTB

	Tutorial 3 – Opitmisation of repulsive potentials in DFTB

	Input File Reference
	Tasks

	Objectives

	Optimisation

	Executables

	Configuration

	Subpackage/module Reference
	core sub-package modules

	dftbutils sub-package

	License

	Development
	External Model and Reference Database

	Parallelisation

	Contributors

Indices and tables

	Index

	Module Index

	Search Page

About

SKPAR is a software tool intended to automate the optimisation of
parameters for the Density Functional Tight Binding (DFTB) theory.
It allows a flexible and simultaneous use of diverse reference data,
e.g. from DFT calculations or experimentally obtained physical quantities.

[image: _images/skpar.diagram.png]

Fig. 1. Conceptual block diagram of SKPAR.

Conceptual Overview

The conceptual diagram of SKPAR is shown in Fig. 1, where the relation between
the following entities is suggested:

	Model – a collection of executables outside SKPAR
that produce some data; In the context of DFTB parameterisation
the model may encompass Slate-Koster table generation (driven by some
parameters per chemical element), and a number of DFTB calculations
that yield total energy and band-structure for one or more atomic
structures. SKPAR features a dynamic model setup via the declaration
of a ‘Model Task-List’ in the SKPAR input file; There is no hard-coded
application-specific model.

	Objectives – a set of single valued functions that depend on the
model parameters; Typical example is a root-mean-squared deviation
between some reference data (e.g. band-structure calculated by DFT)
and the model data (e.g. the band-structure calculated by DFTB).
SKPAR provides a generic facility for declaring objective function
by specifying a list of Objectives in the input file; the specification
includes instruction on accessing reference data and determines a
query into the model and reference databases.

	Reference data – a set of data items that we want the model to be
able to reproduce within certain error tolerance; Reference data may
come from DFT calculations or be experimentally obtained.
SKPAR admits explicit reference data in the input file, or instructions
on how to obtain reference data by accessing and interpreting
external files; support for database query is under development too.

	Cost function – a scalar function of the individual objectives
mentioned above that yields a single number representative of the
quality of a given set of parameter values. Currently SKPAR supports
only weighted root mean squared deviation of the objectives from zero.

	Optimiser – an algorithm for efficient exploration of the parameter
space with the aim of minimising the cost function. SKPAR
features particle-swarm-optimisation (PSO) algorithm.

The sole purpose of the Optimiser in Fig. 1 is to generate parameters in a way
that does not depend on the specifics of the model being optimised.
The Evaluator in Fig. 1 acts as an interface between the embodiment of the
Model by one or more external executables, and the Optimiser.

The declaration of objectives and model tasks, as well as the overall functionality
of SKPAR is controlled by an input file (in YAML [http://pyyaml.org/wiki/PyYAMLDocumentation] format), where the user must
define as a minimum:

	A list of tasks that must be executed in order to obtain model data.

	A list of objectives that must be evaluated in order to assess overall cost.

	The optimisation strategy – algorithm, parameters, etc.

	Aliases to complex commands involving external executables

The optimisation loop realised by SKPAR is shown in Fig. 2.

[image: _images/optimisation.flowchart.png]

Fig. 2. Optimisation loop realised by SKPAR.

Implementation Overview

SKPAR is implemented in Python [http://www.python.org] and currently uses a Particle Swarm
Optimisation (PSO) engine based on the DEAP [http://deap.readthedocs.io/en/master/] library for evolutionary
algorithms. Its control is done via an input file written in YAML [http://pyyaml.org/wiki/PyYAMLDocumentation].

Currently SKPAR provides two sub-packages: core and dftbutils.

The core package is of general nature, and its coupling to
dftbutils is only via a tasks dictionary, through which SKPAR
learns how to acquire data related to a DFTB model.

The dftbutils package concerns with all that is necessary to obtain
data from a DFTB calculation. Presently, this package is limited in its
support to the executables provided by BCCMS at the University of Bremen,
Germany.
This assumes:

	SKGEN is used for Slater-Koster File (.skf) generation (by slateratom,
twocnt, and SKGEN),

	DFTB+ is used as the DFTB calculator, and

	dp_bands is used as post-processor of eigenvalue data to produce
band-structure data.

However, an easy extension to alternative tool-flow is possible, and current
development aims to completely decouple model execution from the core of SKPAR.

See also

Subpackages and modules

Development

Extensions

The design of SKPAR features weak coupling between the core engine that
deals with a general multi-objective optimisation problem, and the specifics
of model execution that yields model data for a given set of parameter values.
Therefore, its extension beyond DFTB parameterisation – e.g. to the closely
related problems of parameter optimisation for empirical tight-bining (ETB)
Hamiltonians or classical interatomic potentials for molecular dynamics,
should be straightforward.

Install

The latest release of SKPAR can be found on GitHub [https://github.com/smarkov/skpar/].

User (w/o sudo or root privilege):

pip3 install --upgrade --user skpar

Please omit the –user option above if installing within a virtual environment.

Developer:

Clone the repository and go to the newly created directory of the repository.

Issue the following command from the root directory of the repository.

pip3 install --upgrade --user -e .

Please omit the –user option above if installing within a virtual environment.

To uninstall:

pip3 uninstall skpar

Dependencies

SKPAR’s operation requires:

	YAML [http://pyyaml.org/wiki/PyYAMLDocumentation] support, for setting up the optimisation,

	the DEAP [http://deap.readthedocs.io/en/master] library, for the Particle Swarm Optimisation engine,

	NumPy [http://www.numpy.org] for data structures, and,

	Matplotlib [http://matplotlib.org/] for plotting.

Test

If cloning the repository, once installation of SKPAR and its dependencies
is complete, it is important to ensure that the test suite runs without
failures, so:

cd skpar_folder/test
python3 -m unittest

Tests runtime is under 30 sec and should result in no errors or failures.

Commands

skpar

The skpar command is the primary tool for setting up and running
optimisation. The typical usage is:

skpar skpar_in.yaml

The few supported options could be obtained by:

skpar -h

usage: skpar [-h] [-v] [-n] [-e] skpar_input

Tool for optimising Slater-Koster tables for DFTB.

positional arguments:
skpar_input YAML input file: objectives, tasks, executables,
 optimisation options.

optional arguments:
-h, --help show this help message and exit
-v, --verbose Verbose console output (include full log as in
 ./skpar.debug.log)
-n, --dry_run Do not run; Only report the setup (tasklist,
 objectives, optimisation).
-e, --evaluate_only Do not optimise, but execute the task list and evaluate
 fitness.

dftbutils

The dftbutils command can be seen as a wrapper around several
related DFTB calculations, example being a band-structure calculation.
It works via subcommands, as follows:

dftbutils -h

usage: dftbutils [-h] [-v] [-n] {bands} ...

Wrapper of DFTB+ for chaining several calculation in a single command

optional arguments:
-h, --help show this help message and exit
-v, --verbose Verbose console output
-n, --dry_run Do not run; Only report the setup, i.e. tasklist.

Available sub-commands::
{bands}
 bands Calculate bandstructure

dftbutils bands

This commands makes the calculations of a band-structure into a single
execution step. It assumes that the relevant calculation on a k-grid,
for the average density, and the following calculation along k-lines
are setup in the scc and bs directories respectively.
Currently it supports dftb+ [http://www.dftb-plus.info/] as DFTB executable, and dp_bands from
dptools [http://dftb-plus.info/tools/dptools/] as the executable that yields a band-structure array.
So what it does in the end is:

cd workdir/scc && dftb+ & cd ../
/bin/cp scc/charges.bin bs
cd bs && dftb+
dp_bands band.out bands & cd ../../

Other options may be added in the future, to eliminate the implicit
reliance on dftb+ and dp_bands.

dftbutils set

This command should allow one to setup the relevant calculations for
dftbutils bands. Currently not supported.

Tutorials

Tutorial 1 – Polynomial Fitting

This example covers the basic structure and content of the
input file. The input file, e.g. skpar_optimise.yaml, would
typically reside in the invocation directory.
The models should have separate execution directories,
typically within the invocation folder.

The relevant files for the example are under skpar/test directory:

	test_optimise.yaml, and the folder

	test_optimise/, where the model

	test_optimise/model_poly3.py is executed (and located)

The example can be run in the skpar/test directory by invoking:

	skpar test_optimise.yaml,

assuming that skpar is installed.

Input YAML file

In this example we try to fit a 3-rd order polynomial to a few points
extracted from such a polynomial.

The setup of SKPAR consists of 4 items:

	A list of objectives that steer the optimisation,

	A list of tasks necessary to evaluate the model,

	An optional dictionary of aliases (used in the task list) resolving to external executables,

	A configuration of the optimisation engine (parameters, algorithm, cost-function).

The corresponding yaml file, test_optimise.yaml reads:

The reference polynomial, the reference points from it (see ref: [...]
in the yaml file above, and the fitted 3-rd order polynomial may look as so:

[image: ../_images/test_optimise_poly3.png]

Comparison of reference and fitted (gbest) polynomials, and reference data points

What is happening?

Objectives:

A model named poly3 should yield data named yval, to be compared
against explicitly provided reference data ref: [...].
Fitness evaluation of this specific objective should be based on
root-mean-squared relative deviations, as stated after eval:.

Tasks (task-list):

At each iteration do:

	
	Set the environment by writing the parameters to current.par and

	substitute values in template.parameters.py to parameters.py,
both files in ./test_optimise folder. (Note that
parameters.py is not used by the model in this case.)

	
	Run the command mypy in the ./test_optimise folder with

	input file model_poly3.py.

	
	Get the model data from test_optimise/model_poly3_out.dat and

	associate it with the yval of model poly3 in the model database.

Optimisation

Generate four parameters (with initial range as given by a pair of
min/max values) according to particle swarm optimisation algorithm,
using 4-particle swarm, evolving it for 5 generations.

Executables

Whenever a run-task requires mypy command, use python instead.

Tutorial 2 – Optimisation of electronic parameters in DFTB

Fitting to experimental data

A more elaborate example is fitting the electronic structure of bulk Si
to match a set of experimentally known E-k points and effective masses.

Here we set three different objectives, each of them contributing several
data items.

The corresponding skpar_in.yaml is below, with comment annotations:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

	executables:
 skgen: ./skf/skgen-opt.sh # script yielding an skf set
 bands: dftbutils bands # band-structure calculation
 # see documentation for dftbutils sub-package

tasks:
 # Three types of tasks exist:
 # - set: [parmeter_file, working_directory, optional_template_file(s)]
 # - run: [command, working_directory]
 # - get: [what, from_sourse(dir, file or dict), to_destination(dict), optional_kwargs]
 # `what` is essentially a function name (see Get-Tasks dictionary)
 # --
 - set: [current.par, skf, skf/skdefs.template.py] # update ./skf/skdefs.py
 - run: [skgen, skf] # generate SKF-set
 - run: [bands, Si-diam] # run dftb+ and dp_bands in Si-diam
 - get: [get_dftbp_bs, Si-diam/bs, Si.bs, # get BS data and put in Si.bs model DB
 {latticeinfo: {type: 'FCC', param: 5.431}}] # must know the lattice for what follows
 - get: [get_dftbp_meff, Si.bs, # get electron effective masses
 {carriers: 'e', directions: ['Gamma-X'], # note: destination is ommitted,
 Erange: 0.005, usebandindex: True}] # hence update the sourse
 - get: [get_dftbp_meff, Si.bs, # get hole effective masses
 {carriers: 'h', directions: ['Gamma-X', 'Gamma-L', 'Gamma-K'],
 nb: 3, Erange: 0.005}]
 - get: [get_dftbp_Ek , Si.bs, # get eigen-values at special points
 {sympts: ['L', 'Gamma', 'X', 'K'],
 extract: {'cb': [0,1,2,3], 'vb': [0,1,2,3]},
 align: 'Evb'}]

objectives:

 - Egap: # item to be queried from model database
 doc: Band-gap of Si (diamond) # doc-string for report purposes (optional)
 models: Si.bs # model name must match destination of a get-tasks
 ref: 1.12 # explicit reference data in for this objective
 weight: 4.0 # relative importance of this objective
 # objective weight in the overall cost function
 eval: [rms, relerr] # objective function: RMS of relative error

 - effective_masses: # items to be queried here will be defined by
 doc: Effective masses, Si # explicit keys, since the reference data consists
 models: Si.bs # of key-value pairs
 ref:
 file: ./ref/meff-Si.dat # the reference data is loaded via numpy.loadtxt()
 loader_args:
 dtype: # NOTABENE: yaml cannot read in tuples, so we must
 # use the dictionary formulation of dtype
 names: ['keys', 'values']
 formats: ['S15', 'float']
 options:
 subweights: # individual data items have sub-weight within an objective
 dflt : 0.1 # changing the default (from 1.) to 0. allows us to consider
 me_GX_0: 1.0 # only select entries; alternatively, set select entries
 me_Xt_0: 0.0 # to zero effectively excludes them from consideration
 weight: 1.0 # objective weight in the overall cost function
 eval: [rms, abserr] # objective function: RMS of absolute error

 - special_Ek:
 doc: Eigenvalues at k-points of high symmetry
 models: Si.bs
 ref:
 file: ./ref/Ek-Si.dat
 loader_args:
 dtype: # NOTABENE: yaml cannot read in tuples, so we must
 # use the dictionary formulation of dtype
 names: ['keys', 'values']
 formats: ['S15', 'float']
 options:
 subweights:
 dflt : 0.1 # changing the default (from 1.) to 0. allows us to consider
 me_GX_0: 1.0 # only select entries; alternatively, set select entries
 mh_Xt_0: 0.0 # to zero effectively excludes them from consideration
 weight: 1.0
 eval: [rms, relerr]

optimisation:
 algo: PSO # algorithm: particle swarm optimisation
 options:
 npart: 2 # number of particles
 ngen : 2 # number of generations
 parameters:
 - Si_Ed : 0.1 0.3 # parameter names must match with placeholders in
 - Si_r_sp: 3.5 7.0 # template files given to set-tasks above
 - Si_r_d : 3.5 8.0

Fitting to DFT and experimental data

A yet another elaborate example is fitting the electronic structure
of bulk Si using a combination of DFT-calculated band-structure and
a set of experimentally known E-k points and effective masses.

This is mostly as before, but provision is made to fit against
DFT calculations not only for equilibrium volume, but also for
slightly strained primitive cell, e.g. within +/- 2% deviation from
the equilibrium vollume.

Another important subtlety relates to the fact that the DFT-calculated
band-gap is unphysically low (~0.6 eV for Si, rather than the
experimentally known 1.12 eV), and the objectives aim to avoid this
issue in the DFTB fit.

This is accomplished by creating a couple of separate objectives for
fitting the shapes of the conduction and valence bands independently,
along with the objective for reaching the experimental band-gap.

The corresponding skpar_in.yaml is below, with comment annotations:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

	config:
 templatedir: template
 workroot: ./_workdir
 keepworkdirs: true

executables:
 skgen: ./template/skf/skgen-opt.sh
 bands: dftbutils bands

tasks:
 - set: [skf/skdefs.template.py]
 - run: [skgen, skf]
 - run: [bands, Si-diam/100]
 - get: [get_dftbp_bs, Si-diam/100/bs, Si.diam.100,
 {latticeinfo: {type: 'FCC', param: 5.431}}]
 - get: [get_dftbp_Ek, Si.diam.100,
 {sympts: ['L', 'Gamma', 'X', 'K'],
 extract: {'cb': [0,1,2,3], 'vb': [0,1,2,3]}, align: 'Evb'}]

objectives:

 - Egap:
 # if using : inside doc string, use '' or "" to surround the string
 doc: 'Si-diam-100: band-gap'
 models: Si.diam.100
 ref: 1.12
 weight: 5.0
 eval: [rms, relerr]

 - bands:
 doc: 'Si-diam-100: valence band'
 models: Si.diam.100
 ref:
 # This is bandstructure from VASP + vasputils, which makes it
 # in the same format as DFTB + dp_bands, i.e. bands are columns
 # in the file, with each row corresponding to a k-point, and
 # the k-points are indexed in column 1 (completely redundant)
 # The advantage of this is that the band with lowest energy
 # also has the lowest column index.
 # But for visualisation, bands span horisontally, and SKPAR
 # treats the bands-type of data as a 2D array where a band
 # is represented by a ROW in the array.
 # This is why, we must always transpose bands from dp_bands
 # or from vasputils, upon loading, and this is here accomplished
 # by the loader_args: {unpack: True} -- cf. numpy.loadtxt() for details.
 file: ~/Dropbox/projects/skf-dftb/Erep fitting/from Alfred/crystal/DFT/di-Si.Markov/PS.100/band/band.dat
 loader_args: {unpack: True}
 process:
 # indexes and ranges below refer to file, not array,
 # i.e. independent of 'unpack' loader argument
 rm_columns: 1 # filter k-point enumeration
 # rm_rows: [[41,60]] # filter K-L segment; must do the same with dftb data... but in dftb_in.hsd...
 # scale : 1 # for unit conversion, e.g. Hartree to eV, if needed
 options:
 # Indexes below refer to the resulting 2D array after loading,
 # transposing, and application of the rm_rows/rm_columns above.
 use_ref: [[1, 4]] # Fortran-style index-bounds of bands to use
 use_model: [[1, 4]]
 align_ref: [4, max] # Fortran-style index of band-index and k-point-index,
 align_model: [4, max] # or a function (e.g. min, max) instead of k-point
 subweights:
 # NOTABENE:
 # --
 # Energy values are with respect to the ALIGNEMENT above.
 # If we want to have the reference band index as zero,
 # we would have to do tricks with the range specification
 # behind the curtain, to allow both positive and negative
 # band indexes, e.g. [-3, 0], inclusive of either boundary.
 # Currently this is *not done*, so only standard Fortran
 # range spec is supported. Therefore, band 1 is always
 # the lowest lying, and e.g. band 4 is the third above it.
 # --
 dflt: 1
 values: # [[range], subweight] for E-k points in the given range of energy
 # notabene: the range below is with respect to the alignment value
 - [[-0.1, 0.], 5.0]
 bands: # [[range], subweight] of bands indexes; fortran-style
 - [[2, 3], 1.5] # two valence bands below the top VB
 - [4 , 2.5] # emphasize the reference band
 # not supported yet ipoint:
 weight: 2.5
 eval: [rms, relerr]

 - bands:
 doc: 'Si-diam-100: conduction band'
 models: Si.diam.100
 ref:
 file: ~/Dropbox/projects/skf-dftb/Erep fitting/from Alfred/crystal/DFT/di-Si.Markov/PS.100/band/band.dat
 loader_args: {unpack: True}
 process:
 rm_columns: 1 # filter k-point enumeration
 # rm_rows: [[41,60]] # filter K-L segment
 options:
 use_ref: [5, 6] # fortran-style index enumeration: NOTABENE: not a range here!
 use_model: [5, 6] # using [[5,6]] would be a range with the same effect
 align_ref: [1, 9] # fortran-style index of band and k-point, (happens to be the minimum here)
 align_model: [1, min] # or a function (e.g. min, max) instead of k-point
 subweights:
 values: # [[range], subweight] for E-k points in the given range of energy
 - [[0.0, 2.5], 1.5] # conduction band from fundamental minimum to the band at Gamma
 - [[0.0, 0.1], 4.0] # bottom of CB and 100meV above, for good meff
 bands: # [[range], subweight] of bands indexes; fortran-style
 - [1, 2.5] # the LUMO only increased in weight; note the indexing
 # reflects the 'use_' clauses above
 weight: 1.0
 eval: [rms, relerr]

 - special_Ek:
 doc: Si-diam-100, eigenvalues at special k-points
 models: Si.diam.100
 ref:
 file: ./ref/Ek-Si.dat
 loader_args:
 dtype: # NOTABENE: yaml cannot read in tuples, so we must
 # use the dictionary formulation of dtype
 names: ['keys', 'values']
 formats: ['S15', 'float']
 options:
 subweights:
 dflt : 0.1 # changing the default (from 1.) to 0. allows us to consider
 Ec_G_0 : 0.5 # only select entries; alternatively, set select entries
 Ec_L_0 : 0.5 # to zero effectively excludes them from consideration
 Ec_X_0 : 2.0
 Ev_L_0 : 2.0
 Ev_K_0 : 2.0
 Ev_X_0 : 2.0
 weight: 1.0
 eval: [rms, relerr]

optimisation:
 algo: PSO # particle swarm optimisation
 options:
 npart: 2 # number of particles
 ngen : 2 # number of generations
 parameters:
 - Si_Ed : 0.1 0.3
 - Si_r_sp: 3.5 7.0
 - Si_r_d : 3.5 8.0

Tutorial 3 – Opitmisation of repulsive potentials in DFTB

Input File Reference

SKPAR is controlled by an input file in YAML [http://pyyaml.org/wiki/PyYAMLDocumentation]. The filename is given as
an argument to the skpar command (e.g. skpar skpar_in.yaml).
Examples of input files can be seen in Tutorials, while here we
provide the full details.

The input file must contain the following four sections, which are
covered in this reference. The sections of the reference correspond to
sections in the input file.

tasks:
 # tasks defining the model

objectives:
 # objectives steering the optimisation

optimisation:
 # optimisation strategy

optional
executables:
 # alises of executable commands used in tasks

optional
config:
 # settings defining work directory layout

	Tasks
	Set Tasks

	Run Tasks

	Get Tasks
	Available get-functions

	Source and Destination

	Optional Arguments

	Plot Tasks
	Plot-Task Examples:

	Objectives
	Overview of Objectives Declaration

	Details of Objective Declaration
	Query Label (query)

	Doc-string (doc)

	Model Name(s) (models)

	Reference Data (ref)

	Objective Weight (weight)

	Evaluation function (eval)

	Options (options)

	Reference Data And Objective Types
	1) Single model, single item/1-D array reference data

	2) Single model, 2-D array reference data

	3) Single model, key-value pairs reference data

	4) Multiple models, single item reference data

	5) Multiple models, 1-D array reference data

	Optimisation
	Cost function

	Optimisation Algorithm

	Parameter declaration

	References

	Executables

	Configuration

Tasks

SKPAR features dynamic model definition by the user, which greatly
enhances its flexibility. The model is defined by a sequence of tasks,
which represent the steps needed to obtaining model data.
The tasks are declared in the input file and are executed in the given
sequence at each iteration.

There are three task categories:

	Set – model update – updates the model environment with
the parameters generated by the optimiser at a given iteration;

	Run – model execution – executes external programs,
scripts or commands, to perform the necessary model calculations;

	Get – collection of model data – acquire the relevant data
from the various output files created during model execution.

	Plot – plotting of objectives data (model and reference) –
produce visual representation of objectives at each iteration;
Plot-tasks are optional.

Refer to Fig. 2. Optimisation loop realised by SKPAR. for the corresponding steps in the optimisation
flow.

The signature of each category and a brief usage is shown below.

For more complete examples see Tutorials.

NOTABENE:

Tasks should be entered as list items of the tasks: section in
the input YAML file.

Set Tasks

tasks:
 - set: [parameter_file, work_directory, optional_templates]

Set-tasks serve to communicate the parameter values generated by the
optimiser to the model.

The parameters (including iteration number and possibly parameter names)
are written to parameter_file in work_directory, for which standard
rules apply: ‘~’ is expanded to user directory, and if there is no
path component included then it is relative to ‘.’.
Default parameter file is current.par, and
default work-directory is . if not explicitly specified.

The most important feature of the set task is its ability to update
template files – optional_templates, according to the dictionary of
parameters used in SKPAR.
The following rules apply in this respect:

	optinonal_templates is a filename or a list of filenames with
the following structure: template.something or
something.template.somthingelse;

	template files must contain named place-holders which are substituted
for the corresponding parameter values;

	upon substitution, the output files bear the name of the
template, except for the template. part being removed –
for example: skdefs.template.py becomes skdefs.py;

	templates are expected to be in work_directory, if they have
no path component; else, standard path expansion applies;

	place holders should be in the old string-formatting syntax for Python,
i.e. %(parameter_name)parameter_type;
NOTABENE: NO space after closing bracket!

Run Tasks

tasks:
 - run: [command, work_directory, input, output]

Run-tasks help to define model that must be optimised in a flexible
way, depending on the specific problem without modifying SKPAR.

The mandatory command argument is a string or list of strings and
may include options and arguments of an external executable,
shell command, or a script.

The command is executed in work_directory, for which standard
rules apply: ‘~’ is expanded to user directory, and if there is no
path component included then it is relative to ‘.’.
Default work-directory is ‘.’ if not explicitly specified.

The input and output files are optional and default to None
and out.log in the working directory.

Run tasks support aliasing via the Executables section.

Get Tasks

tasks:
 - get: [get_function, source, destination, func_arguments]

Get-tasks serve to collect model data from source, optionally perform
some analysis on it and put the result as a key-value item at the
destination.
The destination is an embodiment of the database of a model, which
allows queries of the values corresponding to the available keys.
(see Fig. 1. Conceptual block diagram of SKPAR. and Fig. 2. Optimisation loop realised by SKPAR.).

The signature of get-tasks shown above relies on a dictionary of known
functions, which are mostly model-specific.

Available get-functions

The get_function must be one of those accessible to the user, as
as listed in skpar/core/taskdict.py:

	Generic

	

	get_model_data

	Generic routine based on numpy.loadtxt()

	Specialised: DFTB+

	

	get_dftbp_data

	Get data resulting from a DFTB+ calculation, e.g. in detailed.out.

	get_dftbp_bs

	Get all data from DFTB+/dp_bands calculation of bandstructure.

	get_dftbp_meff

	Extract effective masses from DFTB+/dp_bands calculation of bandstructure.

	get_dftbp_Ek

	Extract named E-k points from DFTB+/dp_bands calculation of bandstructure.

Source and Destination

Beyond the mandatory get-function name, a get-task must have:

	source (mandatory, string) – a directory name or a dictionary
in the model database;

	destination (optional, string) – a dictionary in the model
database; source is tried if destination is not given, and
a dictionary is automatically allocated in the database when a
destination is first used in a get-task;

Optional Arguments

	func_arguments (optional, dict) – a dictionary of key-value
pairs, being keyword arguments of the get-function invoked.
The possible arguments for each get-function can be checked
via the table below, with links to the implementations underlying
the available get-functions.

Plot Tasks

tasks:
 - plot: [plot_function, plot_name, list_of_objectives,
 optional_abscissa_key,
 optional_queries_list,
 kwargs]

Plot tasks produce .pdf plots with specified plot_name, visualising
the reference and model data associated with an objective at each iteration.
The filenames are tagged by an iteration number.

The data of the list_of_objectives is used as ordinate values. An objective
is selected by a pair-list of [query_name, model_name],
e.g. bands: Si.
The abscissa values may be obtained via the optional_abscissa_key, or
alternatively, the index numbers of individual data items are used.
The optional_queries_list allows the plotting routine to obtain extra
data produced by the model at each evaluation, by declaring a query within
the plot-task.
Obviously, both the abscissa key and the extra query keys must be present
in the model database, and this must be guaranteed by the use of
appropriate get-tasks.

The plot is realised by the plot_function, which should be selected
from the table below (follow hyperlinks for details):

	plot_objvs

	generic plotting of 1D or 2D data

	plot_bs

	specialised routine to plot bandstructures

Plot-Task Examples:

	Generic plot of a 1D array data:

tasks:
 ...
 # get both yval and xval from the model and put in poly3 database
 - get: [get_model_data, test_optimise/model_poly3_out.dat, poly3, yval]
 - get: [get_model_data, test_optimise/model_poly3_xval.dat, poly3, xval]

 # plot yval of poly3 using xval of poly3 as abscissa key
 - plot: [plot_objvs, 'test_optimise/pdf/polyfit1', [[yval, poly3]], xval]

objectives:
 - yval:
 doc: 3-rd order polynomial values for some values of the argument
 models: poly3
 ref: [36.55, 26.81875, 10., 13.43125, 64.45]
 eval: [rms, relerr]

[image: _images/polyfit1_0-0.png]

Fig. 4. 1-D array plotted with the generic ``plot_objvs`` function

	Generic plot of a 2D array data.

This example plots a bandstructure (a fake one). Two problem with the resulting plot below
is its integer x-axis, i.e. the k-line lengths are (generally) not
correct, since k-point index is used as an abscissa; no labels either.

tasks:
 ...
 # load bands in fakemodel database; transpose input array after removing column 1
 - get: [get_model_data, reference_data/fakebands-2.dat, fakemodel, bands,
 {loader_args: {unpack: True}, process: {rm_columns: [1]}}]
 # plot the bands using y-value index (along axis 1) as an x-value
 - plot: [plot_objvs, 'test_optimise/pdf/fakebandsplot', [[bands, fakemodel]]]

- bands:
 models: fakemodel
 ref:
 file: reference_data/fakebands.dat
 loader_args: {unpack: True}
 process:
 rm_columns: [1, 2, [8, 9]]

[image: _images/fakebandsplot_0-0.png]

Fig. 5. 2-D array data plotted by the generic plot_objvs function

	Specialised plot of a bandstructure.

This example plots a bandstructure properly. For this, the x-values are constructed
and passed as an abscissa value. Moreover, it shows how to handle the case where
the bandstructure information is split over three different objectives – we have
one objective for the band-gap, another for the valence bands and yet another
for the conduction band, and both VB and CB are 0-aligned.
The magic here relies on:

	strict definition of objectives with bands query: first VB, then CB

	strict enumeration of objectives: fisrt Egap, then bands

tasks:
 ...
 # Get all data from DFTB+/dp_bands. This includes all needed for BS plot,
 # including 'Egap', 'bands', 'kticklabels'
 - get: [get_dftbp_bs, Si-diam/100/bs, Si.diam.100,
 {latticeinfo: {type: 'FCC', param: 5.431}}]

 # The plot_bs does magic when it sees the first objective being 'Egap'.shape==(1,)
 # it shifts the CB by the band-gap, so the band-structure is properly shown.
 # For this to happen, objectives declaration must be such that VB precedes CB!!!
 # The plot_bs will also show k-ticks and labels if requested, as below via
 # 'kticklabels'
 - plot: [plot_bs, Si-diam/100/bs/bs_2, [[Egap, Si.diam.100], [bands, Si.diam.100]],
 kvector, queries: [kticklabels]]

objectives:
 - Egap:
 doc: 'Si-diam-100: band-gap'
 models: Si.diam.100
 ref: 1.12
 weight: 5.0
 eval: [rms, relerr]

 - bands:
 doc: 'Si-diam-100: VALENCE band'
 models: Si.diam.100
 ref:
 file: ~/Dropbox/projects/skf-dftb/Erep fitting/from Alfred/crystal/DFT/di-Si.Markov/PS.100/band/band.dat
 loader_args: {unpack: True}
 process:
 rm_columns: 1 # filter k-point enumeration
 options:
 use_ref: [[1, 4]] # Fortran-style index-bounds of bands to use
 use_model: [[1, 4]]
 align_ref: [4, max] # Fortran-style index of band-index and k-point-index,
 align_model: [4, max] # or a function (e.g. min, max) instead of k-point
 eval: [rms, relerr]

 - bands:
 doc: 'Si-diam-100: CONDUCTION band'
 models: Si.diam.100
 ref:
 file: ~/Dropbox/projects/skf-dftb/Erep fitting/from Alfred/crystal/DFT/di-Si.Markov/PS.100/band/band.dat
 loader_args: {unpack: True}
 process:
 rm_columns: 1 # filter k-point enumeration
 options:
 use_ref: [5, 6] # fortran-style index enumeration: NOTABENE: not a range here!
 use_model: [5, 6] # using [[5,6]] would be a range with the same effect
 align_ref: [1, 9] # fortran-style index of band and k-point, (happens to be the minimum here)
 align_model: [1, min] # or a function (e.g. min, max) instead of k-point
 eval: [rms, relerr]

[image: _images/bs_2_0-0.png]

Fig. 6. Band-structure plotted by the ``plot_bs`` function

Objectives

Central to optimisation are objectives, which in an abstract sense
define the direction in which to steer the process of parameter
refinement. The optimisation problem is defined as a weighted
multi-objective optimisation, where each objective typically is
associated with multiple data items itself.
Each objective is scalarized, meaning that it is evaluated to a
single scalar that represents its own cost or fitness.
Each objective is assigned a weight, corresponding to its relative
significance; weights are automatically normalised.
Marler and Arora provide a good review on multi-objective
optimisation [MOO-review].

The declaration of an objective establishes a way for a direct
comparison between some reference data and some model data.
With each pair of items from the reference and model data
there is associated a weight, referred to as sub-weight
that corresponds to the significance of this item relative to the
rest of the items associated with an objective.
These sub-weights are used in the scalarisation of the objective,
and are also normalised.

Overview of Objectives Declaration

The declaration of an objective in the input file of SKPAR consists of
the following elements:

objectives:
 - query: # a name selected by the end-user
 doc: "Doc-string of the objective (optional)"
 models:
 # Name of models having query_item in their database (mandatory)
 ref:
 # Reference data or instruction on obtaining it (mandatory)
 options:
 # Options for interpretation of reference/model data (optional)
 weight:
 # Weight of the objective (dflt: one)
 eval:
 # How to evaluate the objective (dflt: [rms, abserr]

An example of the simplest objective declaration – the band-gap
of bulk Si in equilibrium diamond lattice – may look like that:

objectives:
 - Egap:
 doc: 'Si-diam-100: band-gap'
 models: Si.diam.100
 ref: 1.12
 weight: 5.0
 eval: [rms, relerr]

See also

	Tutorials

Details of Objective Declaration

Query Label (query)

query is just a label given by the user. SKPAR does not interpret
these labels but uses them to query the model database in order to
obtain model data. Therefore, the only condition that must be met when
selecting a label is that the label must be available in the database(s)
of the model(s) that are listed after models.

It is the responsibility of the Get-Tasks to satisfy this condition.
Recall that a get-task yields certain items (key-value pairs) in the
dictionary that embodies the model database accessed as a destination
of the task.

Certain get-tasks allow the user to define the key of the item, and
this key can be used as a query-label when declaring an objective.
Example of that is shown in Tutorial 1, where
the simple get_model_data task is used, and the query label
is yval.

Other tasks yield a fixed set of items – examples are the
get-tasks provided by the dftbutils package.
Please, consult their documentation to know which items are
available as query-labels: Available get-functions.

There is one case however, in which the above significance of
query is disregarded, and the specified label becomes irrelevant.
This is the case where the reference data of an objective is itself a
dictionary of key-value pairs (or results in such upon acquisition
from a file). This case is automatically recognised by SKPAR and the
user need not do anything special.
The query-label in this case can be something generic.
Example of such an objective can be found in
Tutorial 2, with queries labeled as
effective_masses or special_Ek.

Doc-string (doc)

This is an optional description – preferably very brief, which would
be used in reporting the individual fitness of the objective, and
also as a unique identifier of the objective (complementary to its
index in the list of objectives).
If not specified, SKPAR will assign the following doc-string automatically:
doc: "model_name: query_item".

Model Name(s) (models)

This is a single name, or a list of names given by the user, and is
a mandatory field. A model name given here must be available in the
model database. For this to happen, the model must appear as a
destination of a Get-Task declaration (see Get Tasks).

Beyond a single model name and a list of model names, SKPAR supports
also a list of pairs – [model-name, model-factor].
In such a definition, the data of each model is scaled by the
model-factor, and a summation over all models is done, prior to
comparison with reference data.

Therefore, the three (nonequivalent) ways in which models can be specified are:

objectives:
 - query:
 # other fields
 models: name # or [name,]
 # or
 models: [name1, name2, name3..., nameN]
 # or
 models:
 - [name1, factor1]
 - [name2, factor2]
 # ...
 - [nameN, factorN]

Reference Data (ref)

Reference data could be either explicitly provided, e.g.:
ref: [1.5, 23.4], or obtained from a file.
The latter gives flexibility, but is correspondingly more complicated.

Loading data from file is invoked by:

objectives:
 - query
 # other fields in the declaration
 ref:
 file: filename
 # optional
 loader_args: {key:value-pairs}
 # optional
 process:
 # processing options

SKPAR loads data via Numpy loadtxt() function [https://docs.scipy.org/doc/numpy-1.12.0/reference/generated/numpy.loadtxt.html], and the optional
arguments of this function could be specified by the user via
loader_args

Typical loader-arguments are:

	unpack: True – transposes the input data;
mandatory when loading band-structure produced from
dp_bands or vasputils

	dtype: {names: ['keys', 'values'], formats: ['S15', 'float']} – loads string-float pairs;
mandatory when the reference data file consists of key-value pairs per line.

The process options are interpreted only for 2D array data (ignored
otherwise), and are as follows:

	rm_columns: index, list_of_indices, or, range_specification

	rm_rows: index, list_of_indices, or, range_specification

	scale: scale_factor

NOTABENE: The indexes apply to the rows and columns of the file, and are therefore
independent of the loader arguments (i.e. prior to potential transpose
of the data). The indexes and index ranges are Fortran-style – counting
from 1, and inclusive of boundaries.

Example:

objectives:
 - query:
 ...
 ref:
 file: filename
 process:
 rm_columns: 1 # filter k-point enumeration, and bands, potentially
 rm_rows : [[18,36], [1,4]] # filter k-points if needed for some reason
 scale : 27.21 # for unit conversion, e.g. Hartree to eV, if needed
 ...

Objective Weight (weight)

This is a scalar, corresponding to the relative significance of the
objective compared to the other objectives. Objective weights are
automatically normalised so that there sum is one.

Evaluation function (eval)

Each objective is scalarised by a cost function that can be optionally
modified here. Currently only Root-Mean-Squared Deviation is supported,
but one may choose whether absolute or relative deviations are used.
The field is optional and defaults to RMS of absolute deviations.

objectives:
 ...
 - query:
 ...
 eval: [rms, abserr] # default, absolute deviations used
 # or
 eval: [rms, relerr] # relative devations

Options (options)

Options depend on the type of objective.
One common option is subweights, which allows the user to specify
the relative importance of each data-item in the reference data.
These sub-weights are used in the cost-function representing the
individual objective.

For details, see the sub-weights associated with different
Reference Data And Objective Types below.

Reference Data And Objective Types

The format of reference data could be:

	single item: e.g. a scalar representing the band-gap of a
semiconductor, or a reaction energy;

	1-D array: e.g. the energy values of an energy-volume relation
of a solid;

	2-D array: e.g. the band-structure of a solid, i.e. the set of
eigenstates at different k-number;

	key-value pairs: e.g. named physical quantities, like effective
masses, specific E-k points within the first Brilloin zone, etc.

Declaring an objective for a single model is straight forward, and in
this case a signle item reference data may be thought of as a
special case of 1-D array.
However, the distinction between the two makes sense if we want to
construct an objective based on more than one models, as shown further
below.

There are five types of objectives. The type is deduced from the
combination of format of the reference data and number of model names.
Therefore, SKPAR automatically distinguishes between the following five
objectives types:

1) Single model, single item/1-D array reference data

This is the simplest objective type that associates one or more (1-D array)
items with a query of one model.

In the case of an array reference data, one option is admitted: subweights.
The number of sub-weights must match the length of the reference data array.
Sub-weights are normalised automatically.

Example:

objectives:
 # single model, single scalar reference data
 - band_gap:
 ref: 1.12
 models: Si/bs

 # single model, 1-D array reference data
 - levels:
 ref: [-13.6, -5, -3.0]
 options:
 subweights: [1, 1, 2]
 models: molecule

2) Single model, 2-D array reference data

This objective type allows for greater flexibility in defining the
association between individual reference and model data items, which
may not be the trivial one-to-one correspondence between the entire
arrays yielded by the query item.

The 2-D arrays (of reference and model data) are viewed as composed
of bands – each row is referred to as a band, each column is
referred to as a point.
A visual representation of the concept is shown in Fig. 3.

[image: _images/fakebands.png]

Fig. 3. Visual representation of a 2-D array in terms of bands.
Each data item in the array is a circle on the plot. The lines
represent the association of a row of data in the array with a band.

Correspondence between different bands of the model and reference data can be
established via the following options:

	use_ref: [...]

	use_model: [...]

	align_ref: [...]

	align_model: [...]

The use_ options admit a list of indexes, ranges, or a mix of indexes and
ranges – e.g. [[1, 4], 7, 9], and instruct SKPAR to retain only the
enumerated bands for the comparison of the resulting 2-D sub-arrays of
model and reference data.
Fortran-style indexing must be used, i.e. counting starts
from 1, and ranges are inclusive of both boundaries.

NOTABENE:
In any case, the final comparison (model vs reference) is over arrays of
identical shape, and the resulting arrays after the use_ clause should
be of the same shape.

The align_ options instruct SKPAR to subtract the value of a specific
data item in the array from all values in the array, i.e. change the
reference. This option admits a pair of band-index and point-index, or
a pair of band-index and a function name (min or max) to operate
on the indexed band. In either case, the value of the indexed data item or
the value returned from the function is subtracted from the model or
reference data prior to objective evaluation.

This objective type also admits subweights option, but in this case the
correspondence between sub-weights and data items needs more flexible
specification. This is to avoid the necessity of providing a full 2-D array
of sub-weight coefficients for each data item.
The following sub-options facilitate that:

objectives:
 ...
 - bands:
 ...
 options:
 ...
 subweights:
 dflt: 1.0
 values: [[[value range], subweight], ...]
 bands: [[[band-index range], subweight], ...]

Note

Correspondence between sub-weights and data, per data item, is established
after the application of use_ and align_ options have taken effect.

Example:

objectives:

 - bands:
 doc: Valence Band, Si
 models: Si/bs
 ref:
 file: ./reference_data/fakebands.dat #
 loader_args: {unpack: True}
 process: # eliminate unused columns, like k-pt enumeration
 # indexes and ranges below refer to file, not array,
 # i.e. independent of 'unpack' loader argument
 rm_columns: 1 # filter k-point enumeration, and bands, potentially
 # rm_rows : [[18,36], [1,4]] # filter k-points if needed for some reason
 # scale : 1 # for unit conversion, e.g. Hartree to eV, if needed
 options:
 use_ref: [[1, 4]] # fortran-style index-bounds of bands to use
 use_model: [[1, 4]]
 align_ref: [4, max] # fortran-style index of band and k-point,
 align_model: [4, max] # or a function (e.g. min, max) instead of k-point
 subweights:
 # NOTABENE:
 # --
 # Energy values are with respect to the ALIGNEMENT.
 # If we want to have the reference band index as zero,
 # we would have to do tricks with the range specification
 # behind the curtain, to allow both positive and negative
 # band indexes, e.g. [-3, 0], INCLUSIVE of either boundary.
 # Currently this is not done, so only standard Fortran
 # range spec is supported. Therefore, band 1 is always
 # the lowest lying, and e.g. band 4 is the third above it.
 # --
 dflt: 1
 values: # [[range], subweight] for E-k points in the given range of energy
 # notabene: the range below is with respect to the alignment value
 - [[-0.3, 0.], 3.0]
 bands: # [[range], subweight] of bands indexes; fortran-style
 - [[2, 3], 1.5] # two valence bands below the top VB
 - [4 , 3.5] # emphasize the reference band
 weight: 3.0

3) Single model, key-value pairs reference data

For this objective, a number of queries are made over a single model.
The reference data is a dictionary of key-value pairs.
Note that the name of the objective (meff below) has a generic meaning, and is
not defining the query items. Instead, The queries are based on the keys from
the reference data.

One options is admitted – subweights, and its value must be a dictionary
associating a weighting coefficient with a key.
One of the subweight-keys is dflt, allowing to specify a weight simultaneously
over all keys. The subweights are normalised automatically.
A key is excluded from the queries if its sub-weight is 0.

Example:

objectives:

 - meff:
 doc: Effective masses, Si
 models: Si/bs
 ref:
 file: ./reference_data/meff-Si.dat
 loader_args:
 dtype:
 # NOTABENE: yaml cannot read in tuples, so we must
 # use the dictionary formulation of dtype
 names: ['keys', 'values']
 formats: ['S15', 'float']
 options:
 subweights:
 # consider only a couple of entries from available data
 dflt: 0.
 me_GX_0: 2.
 mh_GX_0: 1.
 weight: 1.5

4) Multiple models, single item reference data

All of the models are queried individually for the same query-item, and the result
is scaled by the non-normalised model-weights or model factors, prior to performing
summation over the data, to produce a single scalar. This scalar is seen as a new
model data item. Accordingly, reference data is a single value too.
This type of objective is convenient for expressing reaction energies as targets.

Example:

objectives:
 - Etot:
 doc: "heat of formation, SiO2"
 models:
 - [SiO2-quartz/scc, 1.]
 - [Si/scc, -0.5]
 - [O2/scc, -1]
 ref: 1.8

5) Multiple models, 1-D array reference data

A single query per model is performed, over several models.
The dimension of the 1-D array of reference data must match the number of models.

The admitted option is subweights – a list of floats, being normalised
weighting coefficients in the cost function of the objective.
This type of objective is convenient for expressing energy-volume relation as
target, where the different models correspond to different volume.

Example:

objectives:
 - Etot:
 models: [Si/scc-1, Si/scc, Si/scc+1,]
 ref: [23., 10, 15.]
 options:
 subweights: [1., 3., 1.,]

REFERENCES

	MOO-review

	R.T. Marler and J.S. Arora, Struct Multidisc Optim 26, 369-395 (2004),
“Survey of multi-objective optimization methods for engineering”

Optimisation

Optimisation is driven towards cost minimisation. The cost is evaluated
at each iteration and new parameters are generated according to a
prescribed algorithm.
The user could select an algorithm and set the options specific to the
algorithm in the optimisation: section of the input file.
Declaration of parameters is done in the same section too.

Example:

optimisation:
 algo: PSO # algorithm: particle swarm optimisation

 options: # algorithm specific
 npart: 8 # number of particles
 ngen : 100 # number of generations

 parameters:
 - Si_Ed : 0.1 0.3 # parameter names must match with placeholders
 - Si_r_sp: 3.5 7.0 # in template files given to set-tasks above
 - Si_r_d : 3.5 8.0

Cost function

The overall cost function is:

\[G(\{\lambda_p\}) = \sqrt{
 \left(
 \sum_j^{N}{\omega_j F_j(\{\lambda_p\})^2}
 \right)}\]

where \(\lambda_p\) are the parameters, \(F_j()\) are
the \(N\) individual objective functions (called objectives,
for brevity), and \(\omega_j\) are the weights associated
with each objective.

The scalarisation of individual objectives allows one to declare
objectives related to different types of physical quantities and
magnitudes, and adjust separately their contribution towards to overall
cost via the objective weights.

Weights represent the relative significance of the different objectives
towards the overall cost, and are automatically normalised:

\[\omega_j = \omega_j / \sum_j \omega_j\]

Each objective yields a scalar according to its own cost function:

\[F_j(\{\lambda_p\}) = \sqrt{
 \sum_i^M{ \omega_i \Delta_i(\{\lambda_p\})^2} }\]

where \(\Delta_i\) are the deviations between model and reference
data for each of the \(M\) data item associated with an objective
(see Objectives for details of the declaration),
and \(\omega_i\) are the sub-weights associated with each data-item.
Sub-weights are also normalised internally.

These deviations may be either absolute or relative, i.e.:
\(\Delta_i = m_i - r_i\) or \(\Delta_i = (m_i - r_i)/r_i\),
with special treatment applied in the latter case where denominator vanishes.
Specifically, if both \(m_i\) and \(r_i\) vanish, \(\Delta_i = 0\),
while for a finite \(m_i\), \(\Delta_i = (m_i - r_i)/m_i\).

Optimisation Algorithm

Currently SKPAR supports only Particle Swarm Optimisation algorithm.
The implementation follows Eq.(3) in [PSO-1] by J. Kennedy;
See also the equivalent and more detailed Eqs(3-4) in [PSO-2].

This algorithm accepts only two options at present:

	npart – number of particles in the swarm

	ngen – number of generations through which the swarm must evolve

Each of the parameters to be optimised represents a degree of freedom
for each particle. Since parameters may have different physical units
and magnitudes, the parameters are internally normalised within the
PSO optimiser. Upon generation of parameter values by the PSO, these
are automatically re-normalised to yield their physical significance
upon passing to the evaluator.

See the module reference for implementation details (PSO (skpar.core.pso)).

Note that the PSO is a stochastic algorithm, and it reports basic
statistics of the cost associated with each iteration.

An iteration is tagged by the pair (generation, particle) throughout
the report and log messages of the optimiser.

Parameter declaration

From the viewpoint of an optimiser, the minimal required information
related to parameters is their number. However, SKPAR permits a more
extensive declaration of parameters:

optimisation:
 ...
 parameters:
 - name: initial_value min_value max_value optional_type
 # or
 - name: initial_value optional_type
 # or
 - name: min_value max_value optional_type
 # or
 - name: optional type

The names of the parameters are important for using template files in
Set-Tasks (see Set Tasks), and for reporting/logging purposes.

The default type of all parameters is float (f), but integer
i may be supported in the future by different algorighms.

For the PSO algorithm, the initial value is ignored, so specifying
the minimal and maximal value is sufficient.

References

	PSO-1

	J.Kennedy, “Particle Swarm Optimization” in
“Encyclopedia of Machine Learning” (2010),

	PSO-2

	‘Particle swarm optimization: an overview’.
Swarm Intelligence. 2007; 1: 33-57.

Executables

Executables are simple aliases to more complex commands invoking
external executables. The alias may contain command-line arguments
and options, a path to the actual command, etc.

Examples:

define aliases to run-task commands
executables:
 # alias an executable found along $PATH
 atom: gridatom
 # alias a shell script in ./skf/ directory
 skgen: skf/skgen.sh
 # alias a command including input arguments
 dftb: mpirun -n 4 dftb+
 # alias a command including input arguments
 bands: ~/sw/dp_tools/dp_bands band.out bands

use the aliases
tasks:
 - run: [skgen, skf, skdefs.py]
 - run: [dftb, Si/bs, out.dftb]
 - run: [bands, Si/bs, out.bands]

Configuration

Configuration of the working directory allows for a choice whether
to execute each evaluation step in a separate subdirectory (labeled
by iteration number). Thus it permits to save each model evaluation
and is the first step towards parallelisation.

Examples:

config:
 # Template files and directories are copied to the individual
 # iteration directory under work-root; default is ``.``.
 templatedir: template

 # Workroot is the directory where each iteration dir will go
 # Default is ``.``.
 workroot: _workdir

 # All results are kept if true
 # NOTABENE: if true, then workroot may become very large!!!
 # NOTABENE: if false (DEFAULT), then plots should be written outside
 # workroot; else will be destroyed.
 keepworkdirs: true

The complete example can be found in the examples/C.dia directory,
while the directory tree layout after the run is recorded in
examples/C.dia/workdir.tree.

Subpackage/module Reference

SKPAR currently includes the following sub-packages:

	core

	the core modules realising the optimisation framework

	dftbutils

	the modules related to a DFTB model

	core sub-package modules
	Main Program (skpar.core.skpar)

	Input handler (skpar.core.input)

	Tasks (skpar.core.tasks)

	Task Dictionary (skpar.core.taskdict)

	Objectives (skpar.core.objectives)

	Query (skpar.core.query)

	Evaluator (skpar.core.evaluate)

	Optimiser (skpar.core.optimise)

	Parameters (skpar.core.parameters)

	PSO (skpar.core.pso)
	Particle Swarm Optimizer (PSO)
	Particles

	Particle normalisaton/re-normalisation

	Particle Swarm

	Utilities (skpar.core.utils)

	dftbutils sub-package
	Run BS (skpar.dftbutils.runBS)

	Query DFTB (skpar.dftbutils.queryDFTB)

	Query k-Lines (skpar.dftbutils.querykLines)

	Lattice (skpar.dftbutils.lattice)

	Plot (skpar.dftbutils.plot)

	Unils (skpar.dftbutils.utils)

core sub-package modules

Main Program (skpar.core.skpar)

Main environment of SKPAR

	
class skpar.core.skpar.SKPAR(infile='skpar_in.yaml', verbose=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The main executable object.

Input handler (skpar.core.input)

Routines to handle the input file of skpar

	
skpar.core.input.get_config(userinp, report=True)

	Parse the arguments of ‘config’ key in user input

	
skpar.core.input.get_input(filename)

	Read input; Exception for non-existent file.

	
skpar.core.input.parse_input(filename, verbose=True)

	Parse input filename and return the setup

Tasks (skpar.core.tasks)

Tasks module, defining relevant classes and functions

	
class skpar.core.tasks.Task(name, func, fargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generic wrapper over functions or executables.

	
skpar.core.tasks.check_taskdict(tasklist, taskdict)

	Check task names are in the task dictionary; quit otherwise.

	
skpar.core.tasks.get_tasklist(userinp)

	Return a list of tuples of task names and task arguments.

	
skpar.core.tasks.initialise_tasks(tasklist, taskdict, report=False)

	Transform a tasklist into a list of callables as per taskdict.

	Parameters

	
	tasklist (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of (task-name, user-arguments) pairs

	taskdict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary mapping task names to actual functions

	Returns

	callable objects, instances of Task class

	Return type

	tasks(list [https://docs.python.org/3/library/stdtypes.html#list])

Task Dictionary (skpar.core.taskdict)

Dictionary with default tasks and their underlying functions.

	
class skpar.core.taskdict.PlotTask(func, plotname, objectives, abscissa_key=None, **kwargs)

	Wrapper for skparplot; extracts data from objectives prior to plotting.

This is a callable object that plots to file the model and reference data
associated with one or more objectives.
The model and reference data constitute the Y-coordinates (ordinates).
The X-coordinates (abscissas) are potentially held in a separate field of
the model data dictionary, and implicitly it is assumed that the
X-coordinates of the reference data are the same
(else the model-vs-reference comparison would make no sense).
The fundamental concept is that we want to visualise our objectives.
So the ordinate can be obtained by the user’s stating which objectives is
to be visualised.
The challenge is that a definition of objective contains no info about the
abscissa, so it has to be explicitly specified by the user or else the
default indexing of the reference or model data items will be used as
abscissa.
The whole mechanism must work with the simplest possible (default)
plotting routine, as well as with a more specialised plotter object.
The initialisation of the PlotTask should establish what dictionary
items are to be plotted as abscissas and ordinates and from which
model dictionary, and how the latter are matched to the corresponding
reference data.
Note however, that objectives may not be visible at the time the task is
initialised. So at init time, we merely record the user’s directions.
Later – at call time – we do the data queries and call the plot function
with the latest model data.

	
pick_objectives(objectives, database)

	Get the references corresponding to the objective tags.

This function acquired the reference data that must be plotted,
by analysing the objectives referred to in the definition of
the plot task. It is not called within the init of the plot task
itself, since at the time the plot task is being declared,
the objectives may not yet be. So a separate agency is suppoosed
to call this method once both objectives and task are declared.
Currently this happens within input.py – at the end of processing
of the input file.

	
skpar.core.taskdict.execute(implargs, database, cmd, workdir='.', outfile='run.log', purge_workdir=False, **kwargs)

	Execute external command in workdir, streaming output/error to outfile.

	Parameters

	
	implargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – caller environment variables

	database (dict-like) – not used, but needed to maintain a task-signature

	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) – command; executed in implargs[‘workroot’]+workir;
if it contains $ or *-globbing, these are shell-expanded

	workdir (path-like) – execution directory relative to workroot

	outfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – output file for the stdout/stderr stream; continuously
updated during execution

	purge_workdir (bool [https://docs.python.org/3/library/functions.html#bool]) – if true, any existing working directory is purged

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – passed directly to the underlying subprocess.call()

	Returns

	None

	Raises

	
	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – if cmd cannot be executed

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if cmd returncode is nonzero

	SubprocessError – other possible circumstances

	
skpar.core.taskdict.get_model_data(implargs, database, item, source, model, rm_columns=None, rm_rows=None, scale=1.0, **kwargs)

	Get data from file and put it in a database under a given key.

Use numpy.loadtxt to get the data from source file and write the data
to database under dst.`key` field. If dst does not exist, it is
created. All kwargs are directly passed to numpy.loadtxt. Additionally,
some post-processing can be done (removing rows or columns and scaling).

	Parameters

	
	implargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of implicit arguments from caller

	database (object [https://docs.python.org/3/library/functions.html#object]) – must support dictionary-like get/update()

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – file name source of data; path relative to implargs[workroot]

	model (str [https://docs.python.org/3/library/stdtypes.html#str]) – model name to be updated in database

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – key under which to store the data in under dst

	rm_columns – [index, index, [ilow, ihigh], otherindex, [otherrange]]

	rm_rows – [index, index, [ilow, ihigh], otherindex, [otherrange]]

	scale (float [https://docs.python.org/3/library/functions.html#float]) – multiplier of the data

	
skpar.core.taskdict.parse_cmd(cmd)

	Parse shell command for globbing and environment variables.

	
skpar.core.taskdict.prepare_for_plotsave(iteration, filename)

	Ensure directory of filename exists and embed iteration number

	
skpar.core.taskdict.substitute_parameters(implargs, database, templatefiles, **kwargs)

	Substitute parameters (within implicit arguments) in given templates.

	
skpar.core.taskdict.wrapper_PlotTask(env, database, *args, **kwargs)

	Wrapper around the legacy PlotTask

Objectives (skpar.core.objectives)

Classes and functions related to the:

	parsing the definition of objectives in the input file,

	setting the objectives for the optimizer, and,

	evaluation of objectives.

	
class skpar.core.objectives.ObjBands(spec, **kwargs)

	Bases: skpar.core.objectives.Objective

	
get(database)

	Return the value of the objective function.

	
class skpar.core.objectives.ObjKeyValuePairs(spec, **kwargs)

	Bases: skpar.core.objectives.Objective

	
get(database)

	Return the corresponding model data, reference data, and sub-weights.
This method must be overloaded in a child-class if a more
specific way to yield the model data in required.

	
class skpar.core.objectives.ObjValues(spec, **kwargs)

	Bases: skpar.core.objectives.Objective

	
get(database)

	Get the model data, align/mask it etc, and return calculated cost.

	
class skpar.core.objectives.ObjWeightedSum(spec, **kwargs)

	Bases: skpar.core.objectives.Objective

	
get(database)

	

	
class skpar.core.objectives.Objective(spec, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Decouples the declaration of an objective from its evaluation.

	Objectives are declared by human input data that defines:

	
	reference data,

	models - from which to obtain model data, and possibly model weights,

	query - the way to obtaining data

	model weights - relative contribution factor of each model,

	options, e.g. to specify sub-weights of individual reference items,

	relative weight of the objective, in the context of multi-objective
optimisation.

Instances are callable, and return a triplet of model data, reference data,
and sub-weights of relative importance of the items within each data.

	
evaluate(database=None)

	Evaluate objective, i.e. fitness of the current model against the reference.

	
get()

	Return the corresponding model data, reference data, and sub-weights.
This method must be overloaded in a child-class if a more
specific way to yield the model data in required.

	
summarise()

	

	
skpar.core.objectives.get_models(models)

	Return the models (names) and corresponding weights if any.

	Parameters

	(str, list of str, list of [str (models) – float] items): The
string is always a model name. If [str: float] items
are given, the float has the meaning of weight, associated
with the model.

	Returns

	
	(model_names, model_weights). Weights

	are set to 1.0 if not found in models. Elements of
the tuple are lists if models is a list.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
skpar.core.objectives.get_objective(spec, **kwargs)

	Return an instance of an objective, as defined in the input spec.

	Parameters

	spec (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – a dictionary with a single entry, being
query: {dict with the spec of the objective}

	Returns

	
	an instance of the Objective sub-class, corresponding

	an appropriate objective type.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
skpar.core.objectives.get_refdata(data)

	Parse the input data and return a corresponding array.

	Parameters

	data (array or array-like, or a dict) – Data, being the
reference data itself, or a specification of how to get
the reference data. If dictionary, it should either
contain key-value pairs of reference items, or contain
a ‘file’ key, storing the reference data.

	Returns

	
	an array of reference data array, subject to all loading

	and post-processing of a data file, or pass data itself,
transforming it to an array as necessary.

	Return type

	array

	
skpar.core.objectives.get_refval(bands, align, ff={'max': <function amax>, 'min': <function amin>})

	Return a reference (alignment) value selected from a 2D array.

	Parameters

	
	bands (2D numpy array) – data from which to obtain a reference value.

	align – specifier that could be (band-index, k-point), or
(band-index, function), e.g. (3, ‘min’), or (‘7, ‘max’)

	ff (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary mapping strings names to functions that can
operate on an 1D array.

	Returns

	the selected value

	Return type

	value (float [https://docs.python.org/3/library/functions.html#float])

	
skpar.core.objectives.get_refval_1d(array, align, ff={'max': <function amax>, 'min': <function amin>})

	Return a reference (alignment) value selected from an array.

	Parameters

	
	array (1D numpy array) – data from which to obtain a reference value.

	align – specifier that could be and index, e.g. 3, or ‘min’, ‘max’

	ff (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary mapping string names to functions that can
operate on an 1D array.

	Returns

	the selected value

	Return type

	value (float [https://docs.python.org/3/library/functions.html#float])

	
skpar.core.objectives.get_subset_ind(rangespec)

	Return an index array based on a spec – a list of ranges.

	
skpar.core.objectives.get_type(n_models, ref, dflt_type='values')

	Establish the type of objective from attributes of reference and models.

	
skpar.core.objectives.parse_weights(spec, refdata=None, nn=1, shape=None, i0=0, normalised=True, ikeys=None, rikeys=None, rfkeys=None)

	Parse the specification defining weights corresponding to some data.

The data may or may not be specified, depending on the type of
specification that is provided. Generally, the specification would
enumerate either explicit indexes in the data, or a range of
indexes in the data or a range of values in the data, and would
associate a weight with the given range.
A list of floats is also accepted, and an array view is returned,
for cases where weights are explicitly enumerated, but no check for length.

To give freedom of the user (i.e. the caller), the way that ranges
are specified is enumerated by the caller by optional arguments –
see ikeys, rikeys and rfkeys below.

	Parameters

	
	spec (array-like or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – values or specification of the subweights,
for example:

spec =
dflt: 1.0 # default value of subweights
indexes: # explicit [index, weight] for 1d-array data

	[0, 1]

	[4, 4]

	[2, 1]

	ranges: # ranges for 1d-array

	
	[[1,3], 2]

	[[3,4], 5]

	bands: # ranges of bands (indexes) in bands (refdata)

	
	[[-3, 0], 1.0] # all valence bands

	[[0, 1], 2.0] # top VB and bottom CB with higher weight

	values: # ranges of energies (values) in bands (refdata)

	
	[[-0.1, 0.], 4.0]

	[[0.2, 0.5], 6.0]

	indexes: # explicit (band, k-point) pair (indexes) for bands (refdata)

	
	[[3, 4], 2.5]

	[[1, 2], 3.5]

	refdata (numpy.array) – Reference data; mandatory only when range of
values must be specified

	nn (int [https://docs.python.org/3/library/functions.html#int]) – length of refdata (and corresponding weights)

	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – shape of reference data, if it is array but not given

	i0 (int [https://docs.python.org/3/library/functions.html#int]) – index to be assumed as a reference, i.e. 0, when
enumerating indexes explicitly or by a range specification.

	ikeys (list of strings) – list of keys to be parsed for explicit
index specification, e.g. [‘indexes’, ‘Ek’]

	rikeys (list of strings) – list of keys to be parsed for range of
indexes specification, e.g. [‘ranges’, ‘bands’]

	rfkeys (list of strings) – list of keys to be parsed for range of
values specification, e.g. [‘values’, ‘eV’]

	Returns

	the weight to be associated with each data item.

	Return type

	numpy.array

	
skpar.core.objectives.parse_weights_keyval(spec, data, normalised=True)

	Parse the weights corresponding to key-value type of data.

	Parameters

	
	spec (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specification of weights, in a key-value fashion.
It is in the example format:

{ 'dflt': 0., 'key1': w1, 'key3': w3}

with w1, w3, etc. being float values.

	data (structured numpy array) – Data to be weighted.

Typical way of obtaining data in this format is to use:

loader_args = {'dtype': [('keys', 'S15'), ('values', 'float')]}
data = numpy.loadtxt(file, **loader_args)

	Returns

	
	weights corresponding to each key in data,

	with the same length as data.

	Return type

	numpy.array

	
skpar.core.objectives.set_objectives(spec, verbose=True, **kwargs)

	Parse user specification of Objectives, and return a list of Objectives for evaluation.

	Parameters

	spec (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of dictionaries, each dictionary being a,
specification of an objective of a recognised type.

	Returns

	
	a List of instances of the Objective sub-class, each

	corresponding to a recognised objective type.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Query (skpar.core.query)

Evaluator (skpar.core.evaluate)

Evaluator engine of SKPAR.

	
class skpar.core.evaluate.Evaluator(objectives, tasklist, taskdict, parameternames, config=None, costf=<function cost_rms>, utopia=None, verbose=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Evaluator

The evaluator is the only thing visible to the optimiser.
It has several things to do:

	Accept a list of parameter values (or key-value pairs),
and an iteration number (or a tuple: (e.g. generation,particle_index)).

	Update tasks (and underlying models) with new parameter values.

	Execute the tasks to obtain model data with the new parameters.

	Evaluate fitness for individual objectives.

	Evaluate global fitness (cost) and return the value. It may be
good to also return the max error, to be used as a stopping criterion.

	
evaluate(parametervalues, iteration=None)

	Evaluate the global fitness of a given point in parameter space.

This is the only object accessible to the optimiser, therefore only
two arguments can be passed.

	Parameters

	
	parametervalues (list [https://docs.python.org/3/library/stdtypes.html#list]) – current point in design/parameter space

	iteration – (int or tupple): current iteration or current
generation and individual index within generation

	Returns

	global fitness of the current design point

	Return type

	fitness (float [https://docs.python.org/3/library/functions.html#float])

	
skpar.core.evaluate.abserr(ref, model)

	Return the per-element difference model and reference.

	
skpar.core.evaluate.cost_rms(ref, model, weights, errf=<function abserr>)

	Return the weighted-RMS deviation

	
skpar.core.evaluate.create_workdir(workdir, templatedir)

	Create a new and clean work directory tree from template

	
skpar.core.evaluate.destroy_workdir(workdir)

	Remove the entire work directory tree

	
skpar.core.evaluate.eval_objectives(objectives, database)

	Evaluate fitness/cost

	
skpar.core.evaluate.get_workdir(iteration, workroot)

	Find what is the root of the work-tree at a given iteration

	
skpar.core.evaluate.relerr(ref, model)

	Return the per-element relative difference between model and reference.

To handle cases where ref vanish, and possibly model vanish
at the same time, we:

	translate directly a vanishing absolute error into vanishing
relative error (where both ref and model vanish.

	take the model as a denominator, thus yielding 1, where
ref vanishes but model is non zero

Optimiser (skpar.core.optimise)

Defines a wrapper around user selectable optimisation engines.

	
class skpar.core.optimise.Optimiser(algo, parameters, evaluate, options=None, verbose=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Wrapper for different optimization engines.

	
report(*args, **kwargs)

	Report optimiser state.

	
skpar.core.optimise.get_optargs(userinp)

	Parse user input for optimisation related arguments.

Parameters (skpar.core.parameters)

Parameters

Module for handling parameters in the context of optimisation.

The following assumptions are made:

	parameters have no meaning to the optimiser engine

	for the optimiser, parameters are just a list of values to be manipulated

	the user must create an OrderedDict of parameter name:value pairs;
the OrderedDict eliminates automatically duplicate definitions of parameters,
yielding the minimum possible number of degrees of freedom for the optimiser

	the OrderedDictionary is built by parsing an skdefs.template file that
contains parameter-strings (conveying the name, initial value and range).

	skdefs.template is parsed by functions looking for a given format from which
parameter-strings are extracted

	the Class Parameter is initialised from a parameter-string.

	a reduced skdefs.template is obtained, by removing the initial value and range
from the input skdefs.template which is ready for creating the final skdefs
file by string.format(dict(zip(ParNames,Parvalues)) substitution.

	
class skpar.core.parameters.Parameter(string, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A parameter object, that is initialised from a string.

ParameterName InitialValue MinValue Maxvalue [ParameterType]
ParameterName MinValue Maxvalue [ParameterType]
ParameterName InitialValue [ParameterType]
ParameterName [ParameterType]

ParameterName must be alphanumeric, allowing _ too.
Iinit/Min/MaxValue can be integer or float
ParameterType is optional (float by default), and indicated
by either ‘i’(int) or ‘f’(float)
White space separation is mandatory.

	
typedict = {'f': <class 'float'>, 'i': <class 'int'>}

	

	
skpar.core.parameters.get_parameters(userinp)

	Parse user input for definitions of parameters.

The definitions should be of the form (‘name’, ‘optionally_something’).
The optional part could in principle be one or more str/float/int.

	
skpar.core.parameters.substitute_template(parameters, parnames, templatefile, resultfile)

	Substitute a template with actual parameter values.

	Parameters

	
	parameters (list [https://docs.python.org/3/library/stdtypes.html#list]) – Parameter list, items being either floats or objects
with .value and .name attributes.

	parnames (list [https://docs.python.org/3/library/stdtypes.html#list]) – If parameters is a list of floats, then
parnames is the list of corresponding names.

	templatefile (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of template file with substitution patterns.

	resultfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of file to contain the substituted result.

	
skpar.core.parameters.update_parameters(workroot, templates, parameters, parnames=None)

	Update relevant templates with new parameter values.

	Parameters

	
	workroot (str [https://docs.python.org/3/library/stdtypes.html#str]) – Root working directory, template names are relative
to this directory.

	templates (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of ascii filenames containing placeholders
for inserting parameter values. The place holders must follow
the old string formatting of Python: %(ParameterName)ParameterType.

	parameters (list [https://docs.python.org/3/library/stdtypes.html#list]) – Either a list of floats, or a list of objects
(each having .value and .name attributes)

	parnames (list [https://docs.python.org/3/library/stdtypes.html#list]) – If parameters is a list of floats, then
parnames is the list of corresponding names.

	
skpar.core.parameters.update_template(template, pardict)

	Makes variable substitution in a template.

	Parameters

	
	template (str [https://docs.python.org/3/library/stdtypes.html#str]) – Template with old style Python format strings.

	pardict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of parameters to substitute.

	Returns

	String with substituted content.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

PSO (skpar.core.pso)

Particle Swarm Optimizer (PSO)

Particles

In PSO, a particle represents a set of parameters to be optimised.
Each parameter is therefore a degree of freedom of the particle.
Each particle is represented by its coordinate value.
Additionally it needs several attributes:

	fitness – the quality of the set of parameters

	speed – how much the position of the particle changes from one generation to the next

	smin/smax – speed limits (observed only initially, in the current implementation)

	best – particles own best position (i.e. with best fitness)

Particle normalisaton/re-normalisation

Additionally to the above generic PSO-related attributes, we need to
introduce position normalisation as follows. The parameters giving the
particle coordinates may be with different physical meaning, magnitudes
and units. However, to keep the PSO generic, it is best to impose identical
scale in each dimension, so that particle range is the same in each direction.
This is achieved by normalising the parameters so that the particle position
in each dimension is between -1 and +1. However, when evaluating the fitness
of the particle, we need the renormalized values (i.e. the true values of
the parameters).

Hence we introduce three additional attributes:

	norm – a list with the scaling factors for each dimension (\(\eta\)),

	shift – offset of the parameter range from 0 (\(\sigma\)),

	renormalized – the true value of the parameters (\(\lambda\)) represented by the particle.

The user must supply only the true range of the particle in the form of a tuple,
per dimension, e.g. \((\lambda_{min}, \lambda_{max})\).

Then \((\lambda_{max}-\lambda_{min})\eta = 2.0\), or,
\(\eta = 2.0/(\lambda_2-\lambda_1)\), and
\(\sigma = 0.5*(\lambda_{max}+\lambda_{min})\).

So, the true particle position (for evaluations) is
\(\lambda = P/\eta + \sigma\),
where \(P\) is the normalised position of the particle.

Using particles

Below, we have the declaration of the particle class and a couple of methods for
creation and evolution of the particle based on the PSO algorithm.

Note that the evaluation of the fitness of the particle is problem specific and
the user must supply its own evaluation function and register it under the name
evaluate with the toolbox.

Particle Swarm

The swarm is a a list of particles, with a couple of additional attributes:

	gbest – globally the best particle (position) ever (i.e. accross any generation so far)

	gbestfit – globally the best fitness (i.e. the quality value of gbest)

The swarm is declared, created and let to evolve with the help of the PSO class.

	
class skpar.core.pso.PSO(parameters, evaluate, npart=10, ngen=100, objective_weights=(-1,), ErrTol=0.001, *args, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class defining Particle-Swarm Optimizer.

	
halloffame = <deap.tools.support.HallOfFame object>

	

	
nBestKept = 10

	

	
optimise(ngen=None, ErrTol=None)

	Let the swarm evolve for ngen (or self.ngen) generations.

	
pAcceleration = 2.9922

	

	
pInertia = 0.7298

	

	
report()

	

	
toolbox = <deap.base.Toolbox object>

	

	
skpar.core.pso.createParticle(prange, strict_bounds=True)

	Create particle of dimensionality len(prange), assigning initial particle
coordinate in the i-th dimension within the prange[i] tuple.
Note that the range is normalised and shifted, so that the result is a coordinate
within -1 to 1 for each dimension, and initial speed between -.5 and +.5.
To get the true (i.e. physical) coordinates of the particle,
one must use part.renormalized field.
:param prange – list of tuples. each tuple is a range of _initial_ coord.:

	Returns

	
	particle – an instance of the Particle class, with initialized coordinates both

	normalized (the instance itself) and true, physical coords (self.renormalized).

	
skpar.core.pso.declareTypes(weights)

	Declare Particle class with fitting objectives (-1: minimization; +1 maximization).
Each particle consists of a set of normalised coordinates, returned by the
particle’s instance itself. The true (physical) coordinates of the particle
are stored in the field ‘renormalized’. The field ‘best’ contains the best
fitness-wise position that the particle has ever had (in normalized coords).
Declare also Swarm class; inherit from list + PSO specific attributes
gbest and gbestfit.
:param weights – tupple, e.g.: (+1,+0.5) for two objective maximization, etc.
:type weights – tupple, e.g.: -1,

	
skpar.core.pso.evolveParticle(part, best, inertia=0.7298, acceleration=2.9922, degree=2)

	A method to update the position and speed of a particle (part), according to the
generalized formula of Eq(3) in J.Kennedy, “Particle Swarm Optimization” in
“Encyclopedia of Machine Learning” (2010), which is equivalent to Eqs(3-4) of
‘Particle swarm optimization: an overview’. Swarm Intelligence. 2007; 1: 33-57.
:param * part – instance of the particle class, the particle to be updated:
:param * best – the best known particle ever:
:type * best – the best known particle ever: within the life of the swarm
:param * inertia – factor scaling the persistence of the particle:
:param * acceleration – factor scaling the influence of particle connection:
:param * degree – unused right now; should serve for a fully informed particle swarm:
:type * degree – unused right now; should serve for a fully informed particle swarm: FIPS
:param but this requires best to become a list of neighbours best;:
:param also u1,u2 and v_u1, v_u2 should be transformed into a Sum over neighbours:

Returns the updated particle

	
skpar.core.pso.evolveParticle_0(part, best, phi1=2, phi2=2)

	This is the implementation shown in the examples of the DEAP library.
The inertial factor is 1.0 (implicit) and seems to be too big.
Phi1/2 are also somewhat bigger than the Psi/Ki resulting from the optimal
Psi = 2.9922
A method to update the position and speed of a particle (part), according to the
original PSO algorithm of Ricardo Poli, James Kennedy and Tim Blackwell,
‘Particle swarm optimization: an overview’. Swarm Intelligence. 2007; 1: 33-57.
:param part – instance of the particle class, the particle to be updated:
:param best – the best known particle ever:
:type best – the best known particle ever: within the life of the swarm
:param phi1,phi2 – connectivity coefficients:

	
skpar.core.pso.pformat(part)

	Return a formatted string for printing all particle info.

	
skpar.core.pso.pso_args(**kwargs)

	

	
skpar.core.pso.report_stats(stats)

	

Utilities (skpar.core.utils)

	
skpar.core.utils.arr2s(aa, precision=3, suppress_small=True, max_line_width=75)

	Helper for compact string representation of numpy arrays.

	
skpar.core.utils.configure_logger(name, filename='skpar.log', verbosity=20)

	Get parent logger: logging INFO on the console and DEBUG to file.

	
skpar.core.utils.f2prange(rng)

	Convert fortran range definition to a python one.

	Parameters

	rng (2-sequence) – [low, high] index range boundaries,
inclusive, counting starts from 1.

	Returns

	(low-1, high)

	Return type

	2-tuple

	
skpar.core.utils.flatten(dd)

	Take a dictionary or list of dictionaries/lists dd,
and produce a lists of values corresponding, dropping the keys.

	
skpar.core.utils.flatten_two(d1, d2)

	Take two dictionaries or lists of dictionaries/lists d1 and d2,
and produce two lists of values corresponding to the keys/order in d1.
d2 is optional.
Assume that the keys of d1 are a subset of the keys of d2.
Assume nesting, i.e. some of the items in d1 are dictionaries
and some are lists, numpy arrays, or a non-sequence type.
The assumption is again: nested dictionaries in d2 must have
at least the keys of the corresponding nested dictionaries in d1,
and the lists in d1 must be no shorter than the lists in d2.
…some assertions may help here…

	
skpar.core.utils.get_logger(name, filename=None, verbosity=20)

	Return a named logger with file and console handlers.

Get a name-logger. Check if it is(has) a parent logger.
If parent logger is not configured, configure it, and if a child logger
is needed, return the child.
The check for parent logger is based on name: a child if it contains ‘.’,
i.e. looking for ‘parent.child’ form of name.
A parent logger is configured by defining a console handler at verbosity
level, and a file handler at DEBUG level, writing to filename.

	
skpar.core.utils.get_ranges(data)

	Return list of tuples ready to use as python ranges.

	Parameters

	data (int [https://docs.python.org/3/library/functions.html#int], list of int, list of lists of int) – A single index, a list of indexes, or a list of
2-tuple range of indexes in Fortran convention,
i.e. from low to high, counting from 1, and inclusive

	Returns

	list of lists of 2-tuple ranges, in Python convention -
from 0, exclusive.

	
skpar.core.utils.is_monotonic(x)

	

	
skpar.core.utils.islistoflists(arg)

	Return True if item is a list of lists.

	
skpar.core.utils.normalise(a)

	Normalise the given array so that sum of its elements yields 1.

	Parameters

	a (array) – input array

	Returns

	The norm is the sum of all elements across all dimensions.

	Return type

	a/norm (array)

	
skpar.core.utils.normaliseWeights(weights)

	normalise weights so that their sum evaluates to 1

dftbutils sub-package

Run BS (skpar.dftbutils.runBS)

Query DFTB (skpar.dftbutils.queryDFTB)

	
class skpar.dftbutils.queryDFTB.BandsOut(*args, **kwargs)

	A dictionary initialised with the bands from dp_bands or similar tool.

Useage:

destination_dict = BandsOut.fromfile(file)

	
classmethod fromfile(fp, enumeration=True)

	

	
class skpar.dftbutils.queryDFTB.Bandstructure(*args, **kwargs)

	A dictionary initialised with the bands and some analysis of the bands.

It requires two files: detailed.out from dftb+, and bands_tot.dat from dp_bands.
It reads the bands via BandsOut; obtains the number of electrons via DetailedOut.
It returns a dictionary with all that is in DetailedOut plus:
‘bands’: energy bands (excluding k-point enumeration)
‘Ecb’ : LUMO
‘Evb’ : HOMO
‘Egap’ : Ecb - Evb

Useage:

destination_dict = Bandstructure.fromfiles(detailed.out_file, bands_file)

	
classmethod fromfiles(fp1, fp2, enumeration=True)

	Read the output of dftb+ and dp_bands and return a dictionary with band-structure data.

	
class skpar.dftbutils.queryDFTB.DetailedOut(*args, **kwargs)

	A dictionary initialised from file with the detailed output of dftb+.

Useage:

destination_dict = DetailedOut.fromfile(filename)

	
conv_tags = [('iSCC', ('nscc', 'scc_err')), ('SCC converged', True), ('SCC is NOT converged', True)]

	

	
energy_tags = [('Fermi energy:', 'Ef'), ('Fermi level:', 'Ef'), ('Band energy:', 'Eband'), ('TS:', 'Ets'), ('Band free energy (E-TS):', 'Ebf'), ('Extrapolated E(0K):', 'E0K'), ('Energy H0:', 'Eh0'), ('Energy SCC:', 'Escc'), ('Energy L.S:', 'Els'), ('Total Electronic energy:', 'Eel'), ('Repulsive energy:', 'Erep'), ('Total energy:', 'Etot'), ('Total Mermin free energy:', 'Emermin')]

	

	
classmethod fromfile(fp)

	

	
nelec_tags = [('Input/Output electrons (q):', ('nei', 'neo')), ('Input / Output electrons (q):', ('nei', 'neo'))]

	

	
skpar.dftbutils.queryDFTB.calc_masseff(bands, extrtype, kLineEnds, lattice, meff_tag=None, Erange=0.008, forceErange=False, ib0=0, nb=1, usebandindex=False, **kwargs)

	A complex wrapper around meff(), with higher level interface.

Calculate parabolic effective mass at the specified extrtype of
given bands, calculated along two points in k-space defined by a
list of two 3-tuples - kLineEnds. lattice is a lattice object, defining
the metric of the kspace.

	Parameters

	
	bands – an array (nb, nk) energy values in [eV], or a 1D array like

	extrtype – type of extremum to search for: ‘min’ or ‘max’,
handled by np.min()/max()

	kLineEnds – two 3-tuples, defining the coordinates of the
endpoints of the k-line along which band is obtained,
in terms of k-scace unit vectors, e.g. if band
is obtained along a number of points from Gamma to
X, of the BZ of a cubic lattice, then kLineEnds
should read ((0, 0, 0), (1, 0, 0))

	lattice – lattice object, holding mapping to kspace.

	meff_name – the name to be featured in the logger

	Erange – Energy range [eV] over which to fit the parabola
[dflt=8meV], i.e. ‘depth’ of the assumed parabolic well.

	Return meff

	the value of the parabolic effective mass [m_0]
at the extrtype of the given E-kline,
if the extremum is not at the boundary of the given k-line.

	
skpar.dftbutils.queryDFTB.expand_meffdata(meff_data)

	

	
skpar.dftbutils.queryDFTB.get_Ek(bsdata, sympts)

	

	
skpar.dftbutils.queryDFTB.get_bandstructure(implargs, database, source, model, detailfile='detailed.out', bandsfile='bands_tot.dat', hsdfile='dftb_pin.hsd', latticeinfo=None, *args, **kwargs)

	Get bandstructure and related data from dftb+.

Assume that source is the execution directory where detailed.out, and
bands_tot.dat can be found. Additionally, the parsed input of dftb+ –
dftb_pin.hsd is also checked if lattice info is given, in order to
analyse k-paths and provide data for subsequent plotting.

	
skpar.dftbutils.queryDFTB.get_dftbp_data(implargs, database, source, model, datafile='detailed.out')

	Get whatever data can be obtained from detailed.out of dftb+.

Assume source is the directory where dftb+ was executed and that
datafile is the detailed output file, along with dftb_pin.hsd, etc.

	Parameters

	
	implargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – implicit key-word arguments passed by caller

	database (obj) – a database object that has a .update(dict) method

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – directory name where dftb+ has been executed

	model (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the model whose data is updated

	datafile (str [https://docs.python.org/3/library/stdtypes.html#str]) – base-name of the detailed output from dftb+

	
skpar.dftbutils.queryDFTB.get_dftbp_evol(implargs, database, source, model, datafile='detailed.out', *args, **kwargs)

	Get the data from DFTB+ SCC calculation for all models.

This is a compound task that augments the source path to include
individual local directories for different cell volumes, based
on the assumption that these directories are named by 3 digits.
Similar assumption applies for the model, where the name
of the base model is augmented by the 3-digit directory number.

	Parameters

	
	workroot (string) – base directory where model directories are found.

	source (string) – model directory

	model (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the model whose data is updated

	datafile (string) – optional filename holding the data.

	
skpar.dftbutils.queryDFTB.get_effmasses(implargs, database, source, model=None, directions=None, carriers='both', nb=1, Erange=0.04, usebandindex=False, forceErange=False, *args, **kwargs)

	Get effective masses along select directions for select carrier types.

Obtain the effective masses for the given carriers for the first nb
bands in the VB and/or CB, along the given directions, as well as the
values of the extrema and their position along these directions.
Label the effective masses by band index (starting from 0, within the
band for the select carrier type), if usebandindex is True.
Carrier types (carriers) could be ‘e’, ‘h’, ‘both’.
Erange is the energy range over which parabolic expansion is attempted

	
skpar.dftbutils.queryDFTB.get_labels(ss)

	Return two labels from a string containing “-” or two words starting with a capital.

For example, the input string may be ‘G-X’, ‘GX’, ‘Gamma-X’, ‘GammaX’.
The output is always: (‘G’, ‘X’) or (‘Gamma’, ‘X’).

	
skpar.dftbutils.queryDFTB.get_special_Ek(implargs, database, source, model=None, sympts=None, extract={'cb': [0], 'vb': [0]}, align='Ef', usebandindex=True, *args, **kwargs)

	Query bandstructure data and yield the eigenvalues at k-points of high-symmetry.

	
skpar.dftbutils.queryDFTB.greek(label)

	Change Greek letter names to single Latin capitals, and vice versa.

Useful for some names of high-symmetry points inside the BZ, to shorten
the names of Gamma, Sigma and Delta.
Note that Lambda cannot be made into L, as it will make automatic L to
Lambda as well, which is wrong since L is a standard point on the BZ
surface.

	
skpar.dftbutils.queryDFTB.is_monotonic(x)

	Return True if x is monotonic (either never increases or never decreases); False otherwise.

	
skpar.dftbutils.queryDFTB.meff(band, kline)

	Return the effective mass, in units of m_0, given a band a k-line.

The mass is calculated as as the inverse of the curvature of bands,
assuming parabolic dispersion within kline, working in atomic units:
bands and kline are in Hartree and 1/Bohr, h_bar = 1, m_0 = 1

meff = (h_bar**2) / (d**2E/dk**2), [m0]

	
skpar.dftbutils.queryDFTB.plot_fitmeff(ax, xx, x0, extremum, mass, dklen=None, ix0=None, *args, **kwargs)

	Plot the second order polynomial fitted to E(k) dispersion on top of
ax axes of a matplotlib figure object.
mass is the fitted effective mass
extremum is extremal energy, E0
x0 is the relative position of the extremum along the given
kline xx.

Assumed is that around the extremum at k0:

E”(k) = 1/mass => E(k) = E(x) = c2*x^2 + c1*x + c0.

Since E”(x) = 2*c2 => c2 = 1/(2*mass).
Since E’(x) = 2*c2*x + c1, and E’(x=x0) = 0 and E(x=x0) = E0
=> knowing E0 and x0, we can obtain c1 and c2:

c1 = -2*c2*x0
c0 = E0 - c2*x0^2 - c1*x0

Query k-Lines (skpar.dftbutils.querykLines)

Module for k-Lines extraction and k-Label manipulation

Recall that bands contains NO information of the k-points.
So we must provide that ourselves, and reading the dftb_pin.hsd (the parsed
input) seems the best way to do so. We also need to figure out what to do
with equivalent points, or points where a new path starts.
Finally, points internal to the Brilloin Zone are labeled with Greek letters,
which should be rendered properly.

	
skpar.dftbutils.querykLines.get_klines(lattice, hsdfile='dftb_pin.hsd', workdir=None, *args, **kwargs)

	This routine analyses the KPointsAndWeights stanza in the input file of DFTB+
(given as an input argument hsdfile), and returns the k-path, based on
the lattice object (given as an input argument lattice).
If the file name is not provided, the routine looks in the default
dftb_pin.hsd, i.e. in the parsed file!

The routine returns a list of tuples (kLines) and a dictionary (kLinesDict)
with the symmetry points and indexes of the corresponding k-point in the
output band-structure.

kLines is ordered, as per the appearence of symmetry points in the hsd input, e.g.:

	[(‘L’, 0), (‘Γ’, 50), (‘X’, 110), (‘U’, 130), (‘K’, 131), (‘Γ’, 181)]

therefore it may contain repetitions (e.g. for ‘Γ’, in this case).

kLinesDict returns a dictionary of lists, so that there’s a single entry for
non-repetitive k-points, and more than one entries in the list of repetitive
symmetry k-points, e.g. (see for ‘Γ’ above):

	{‘X’: [110], ‘K’: [131], ‘U’: [130], ‘L’: [0], ‘Γ’: [50, 181]}

	
skpar.dftbutils.querykLines.get_kvec_abscissa(lat, kLines)

	Return abscissa values for the reciprocal lengths corresponding
to the k-vectors derived from kLines.

	
skpar.dftbutils.querykLines.greekLabels(kLines)

	Check if Γ is within the kLines and set the label to its latex formulation.
Note that the routine will accept either list of tupples (‘label’,int_index) or
a list of strings, i.e. either kLines or only the kLinesLabels.
Could do check for other k-points with greek lables, byond Γ
(i.e. points that are inside the BZ, not at the faces) but in the future.

Lattice (skpar.dftbutils.lattice)

This module lists the component vectors of the direct and reciprocal lattices
for different crystals.
It is based on the following publication:
Wahyu Setyawan and Stefano Curtarolo, “High-throughput electronic band
structure calculations: Challenges and tools”, Comp. Mat. Sci. 49 (2010),
pp. 291–312.

	
class skpar.dftbutils.lattice.BCC(param, setting='curtarolo')

	This is Body Centered Cubic lattice (cF)

	
class skpar.dftbutils.lattice.CUB(param, setting=None)

	This is CUBic, cP lattice

	
class skpar.dftbutils.lattice.FCC(param, setting='curtarolo')

	This is Face Centered Cubic lattice (cF)

	
class skpar.dftbutils.lattice.HEX(param, setting='curtarolo')

	This is HEXAGONAL, hP lattice

	
class skpar.dftbutils.lattice.Lattice(info)

	Generic lattice class.

	
get_kcomp(string)

	Return the k-components given a string label or string set of fraction.

Example of string:

s = ‘X’
s = ‘1/2 0 1/2’
s = ‘1/2, 0, 1/2’
s = ‘0.5 0 0.5’

	
get_kvec(kpt)

	Return the real space vector corresponding to a k-point.

	
class skpar.dftbutils.lattice.MCL(param, setting='curtarolo')

	This is simple Monoclinic MCL_* (mP) lattice, set via
a, b <= c, and alpha < 90 degrees, beta = gamma = 90 degrees as in
W. Setyawan, S. Curtarolo / Computational Materials Science 49 (2010) 299-312.
Setting=ITC should work for the standard setting (angle>90) of ITC-A,
but is not currently implemented.
Note that conventional and primitive cells are the same.

	
class skpar.dftbutils.lattice.MCLC(param, setting='ITC')

	This is base-centered Monoclinic MCLC_* mS, lattice
Primitive lattice defined via:
a <> b <> c, and alpha <> 90 degrees, beta = gamma = 90 degrees

	
class skpar.dftbutils.lattice.ORC(param, setting='curtarolo')

	This is ORTHOROMBIC, oP lattice

	
class skpar.dftbutils.lattice.RHL(param, setting=None)

	This is Rhombohedral RHL, hR lattice
Primitive lattice defined via:
a = b = c, and alpha = beta = gamma <> 90 degrees
Two variations exists: RHL1 (alpha < 90) and RHL2 (alpha > 90)

	
class skpar.dftbutils.lattice.TET(param, setting='curtarolo')

	This is TETRAGONAL, tP lattice

	
skpar.dftbutils.lattice.getSymPtLabel(kvec, lattice)

	Return the symbol corresponding to a given k-vector, if named.

This routine returns the symbol of a symmetry point that is
given in terms of reciprocal cell-vectors (kvec – a 3-tuple)
of the lattice object.

	
skpar.dftbutils.lattice.get_dftbp_klines(lattice, delta=None, path=None)

	Print out the number of points along each segment of the BZ path
(default for the lattice chosen if None) of a given lattice object

	
skpar.dftbutils.lattice.get_kvec(comp_rc, recipr_cell)

	comp_rc are the components of a vector expressed in terms of
reciprocal cell vectors recipr_cell.
Return the components of this vector in terms of reciprocal
unit vectors.

	
skpar.dftbutils.lattice.get_recipr_cell(A, scale)

	Given a set of set of three vectors A, assumed to be that defining
the primitive cell, return the corresponding set of vectors that define
the reciprocal cell, B, scaled by the input parameter scale,
which defaults to 2pi. The B-vectors are computed as follows:
B0 = scale * (A1 x A2)/(A0 . A1 x A2)
B1 = scale * (A2 x A0)/(A0 . A1 x A2)
B2 = scale * (A0 x A1)/(A0 . A1 x A2)
and are returnd as a list of 1D arrays.
Recall that the triple-scalar product is invariant under circular shift,
and equals the (signed) volume of the primitive cell.

	
skpar.dftbutils.lattice.getkLineLength(kpt0, kpt1, Bvec, scale)

	Given two k-points in terms of unit vectors of the reciprocal lattice, Bvec,
return the distance between the two points, in terms of reciprocal length.

	
skpar.dftbutils.lattice.len_pathsegments(lattice, scale=None, path=None)

	Report the lenth in terms of _scale_ (2pi/a if None) of the BZ _path_
(default for the lattice chosen if None) of a given _lattice_ object

	
skpar.dftbutils.lattice.repr_lattice(lat)

	Report cell vectors, reciprocal vectors and standard path

Plot (skpar.dftbutils.plot)

	
skpar.dftbutils.plot.magic_plot_bs(xval, yval, filename=None, **kwargs)

	A magic-wrapper around the fundamental back-end plot_bs function.

The magic is that if yval is a list of [Egap, VBand, CBand,…] the
data is modified so that a band-gap, Egap, is open between cband and vband,
even if they are not properly aligned, e.g. if CB bottom is 0 at the same
time as VB top is 0. Note that the CB is moved, not the VB.
NOTABENE: the order must be Egap, VB, CB!

We do this here, so that we don’t burden the PlotTask elsewhere with
knowledge of what band structure and band-gap is, and keep it
independent of what it is plotting. However, somewhere, the gap need
to be opened, if we’ve specified CB and VB as independent objectives,
and certainly the band-end plot_bs is not such a place due to its
intended generality (of plotting band-structures unrelated to
objectives, optimisation etc.).

The magic happens only if yval contains an array shaped (1,), which is
taken as a band-gap. If no such array is discovered, no shifts are applied
to the bands.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – valid filename to save the plot

	xval (arr) – k-points (1D array or a list of values and 1D arrays)

	yval (arr) – bands (2D-array or a list values and 2D arrays)

	Kwargs:

	Check plot_bs for details as kwargs are passed directly to it.

	Returns

	matplotlib figure and axes objects containing the plot

	Return type

	fig, ax

	
skpar.dftbutils.plot.plot_bs(xx, yy, colors=None, linelabels=None, title=None, figsize=(6, 7), xticklabels=None, yticklabels=None, xlim=None, ylim=None, xlabel=None, ylabel='Energy (eV)', filename=None, legendloc=0, **kwargs)

	Routine for plotting band-structure.

Accepts one or more sets of k-vector and corresponding bands,
but the k-vector may be shared too.
If you supply a set of ticks and labels for specific k-points,
it will put them on X axis and will extend the xticks over
all Y as thin lines; see xticklabels below.

	Parameters

	
	xx – 1D array or a list of such; k-points.shape = nk

	yy – 2D array or a list of such; bands.shape = nk, nE
Notabene: each band is a column in its respective array

so that the lowest band is leftmost.

	colors – list of colors, one per 2D array of bands; if None,
default matplotlib Vega/D3 set of colours is used.

	linelabels – list of strings to label each set of bands in legend

	title – figure title

	figsize – tupple for figure dimensions, in inches; defaults to (6,7)

	ylim (xlim,) – tupple of limits for X-axis, or Y-axis

	ylabel (xlabel,) – axes labels

	yticklabels (xticklabels,) – a list of explicit X- or Y-axis ticks
and labels, e.g. [(‘label’,x), …]

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – filename (incl directory as needed); if present
the figure is saved to that file.

	Kwargs:

	kticklabels: interpreted as xticklabels
eticklabels: interpreted as yticklabels
No other kwargs are interpreted, but no exception is generated
if supplied.

	Returns

	matplotlib objects holding the plot

	Return type

	fig, ax

	
skpar.dftbutils.plot.set_axes(ax, xlabel, ylabel, xticklabels=None, yticklabels=None, extend_xticks=False, extend_yticks=False)

	Configure axes – labels and ticks/ticklabels.

	Parameters

	
	ax – matplotlib axis object

	ylabel (xlabel,) – labels for the x and y axis

	yticklabels (xticklabels,) – list of [(value, ‘label’),] for
each explicit position of ticks and their labels

	extend_yticks (extend_xticks,) – extend_x/yticks entire graph

	
skpar.dftbutils.plot.set_mplrcpar(**kwargs)

	Configure matplotlib rcParams.

	
skpar.dftbutils.plot.set_xylimits(ax, xval, yval, xlim=None, ylim=None, issetx=False, issety=False)

	Set x and y axis limits to exactly fit the data if not explicit.

ax: matplotlib axis object
xval, yval: array (could be record array), lists of arrays
xlim, ylim: tupple of (min,max) - explicit axis limits
issetx, issety (bool): used if xlim or ylim is None, in which case

these flags serve to tell us to find min and max of the
xval and yval even if these are record arrays where broadcasting
won’t work. (e.g. yval is an array of two 1D arrays of different shape)

Unils (skpar.dftbutils.utils)

General utility functions

	
skpar.dftbutils.utils.configure_logger(name, filename=None, verbosity=20)

	Get parent logger: logging INFO on the console and DEBUG to file.

	
skpar.dftbutils.utils.execute(cmd, workdir='.', outfile='run.log', purge_workdir=False, **kwargs)

	Execute external command in workdir, streaming output/error to outfile.

	Parameters

	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) – command; executed in workir; if it contains $ or
*-globbing, these are shell-expanded

	workdir (path-like) – execution directory relative to workroot

	outfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – output file for the stdout/stderr stream; continuously
updated during execution

	purge_workdir (bool [https://docs.python.org/3/library/functions.html#bool]) – if true, any existing working directory is purged

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – passed directly to the underlying subprocess.call()

	Returns

	None

	Raises

	
	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – if cmd cannot be executed

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if cmd returncode is nonzero

	SubprocessError – other possible circumstances

	
skpar.dftbutils.utils.get_logger(name, filename=None, verbosity=20)

	Return a named logger with file and console handlers.

Get a name-logger. Check if it is(has) a parent logger.
If parent logger is not configured, configure it, and if a child logger
is needed, return the child.
The check for parent logger is based on name: a child if it contains ‘.’,
i.e. looking for ‘parent.child’ form of name.
A parent logger is configured by defining a console handler at verbosity
level, and a file handler at DEBUG level, writing to filename.

	
skpar.dftbutils.utils.parse_cmd(cmd)

	Parse shell command for globbing and environment variables.

License

SKPAR is distributed under The MIT License [https://opensource.org/licenses/MIT].

Development

Further development of SKPAR is along the following lines.

External Model and Reference Database

The aims is to completely decouple the core of the optimisation
engine from the application specifics. To achieve this:

	the internal model database dictionary must be taken out of the core
sub-package and queries must be made to address an external database;

	the task handling has to be done by an external task manager, which
can be application specific, and its setup may be still driven by
the input YAML file of SKPAR;

	an external task-manager is needed to wrap the executables that yield
model data and make them store that data in the external model database;

	support for reference databases should complement the current mechanism
through which the declaration of objectives is realised.

A conceptual block-diagram of the intended development is shown below.

[image: _images/skpar.diagram--development.png]

Conceptual block diagram of SKPAR with external model database

Implementation should be straightforward, e.g. by deploying TinyDB [https://pypi.python.org/pypi/tinydb] or similar.

As far as task-manager is concerned, dftbutils bands already represents
an example in this direction, short of putting data in a database.

Parallelisation

The calculations done within SKPAR consume negligible time in comparison to
the evaluation of the model.
The executables embodying the model are computationally very intense but are
typically parallelised.
However, much gain may be obtained by parallelising the evaluation of individuals
within the population (e.g. per particle, when PSO algorithm is used).

Contributors

Stanislav Markov, Dept. Chemistry, The University of Hong Kong

Bálint Aradi, BCCMS, University of Bremen, Germany

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 skpar	

 	
 	
 skpar.core.evaluate	

 	
 	
 skpar.core.input	

 	
 	
 skpar.core.objectives	

 	
 	
 skpar.core.optimise	

 	
 	
 skpar.core.parameters	

 	
 	
 skpar.core.pso	

 	
 	
 skpar.core.skpar	

 	
 	
 skpar.core.taskdict	

 	
 	
 skpar.core.tasks	

 	
 	
 skpar.core.utils	

 	
 	
 skpar.dftbutils.lattice	

 	
 	
 skpar.dftbutils.plot	

 	
 	
 skpar.dftbutils.queryDFTB	

 	
 	
 skpar.dftbutils.querykLines	

 	
 	
 skpar.dftbutils.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	about

 	
 	abserr() (in module skpar.core.evaluate)

 	arr2s() (in module skpar.core.utils)

B

 	
 	BandsOut (class in skpar.dftbutils.queryDFTB)

 	
 	Bandstructure (class in skpar.dftbutils.queryDFTB)

 	BCC (class in skpar.dftbutils.lattice)

C

 	
 	calc_masseff() (in module skpar.dftbutils.queryDFTB)

 	check_taskdict() (in module skpar.core.tasks)

 	commands

 	config

 	configure_logger() (in module skpar.core.utils)

 	(in module skpar.dftbutils.utils)

 	
 	contributors

 	conv_tags (skpar.dftbutils.queryDFTB.DetailedOut attribute)

 	core

 	cost_rms() (in module skpar.core.evaluate)

 	create_workdir() (in module skpar.core.evaluate)

 	createParticle() (in module skpar.core.pso)

 	CUB (class in skpar.dftbutils.lattice)

D

 	
 	declareTypes() (in module skpar.core.pso)

 	destroy_workdir() (in module skpar.core.evaluate)

 	
 	DetailedOut (class in skpar.dftbutils.queryDFTB)

 	develop

 	dftbutils

E

 	
 	energy_tags (skpar.dftbutils.queryDFTB.DetailedOut attribute)

 	eval_objectives() (in module skpar.core.evaluate)

 	evaluate() (skpar.core.evaluate.Evaluator method)

 	(skpar.core.objectives.Objective method)

 	Evaluator (class in skpar.core.evaluate)

 	
 	evolveParticle() (in module skpar.core.pso)

 	evolveParticle_0() (in module skpar.core.pso)

 	executables

 	execute() (in module skpar.core.taskdict)

 	(in module skpar.dftbutils.utils)

 	expand_meffdata() (in module skpar.dftbutils.queryDFTB)

F

 	
 	f2prange() (in module skpar.core.utils)

 	FCC (class in skpar.dftbutils.lattice)

 	flatten() (in module skpar.core.utils)

 	
 	flatten_two() (in module skpar.core.utils)

 	fromfile() (skpar.dftbutils.queryDFTB.BandsOut class method)

 	(skpar.dftbutils.queryDFTB.DetailedOut class method)

 	fromfiles() (skpar.dftbutils.queryDFTB.Bandstructure class method)

G

 	
 	get() (skpar.core.objectives.ObjBands method)

 	(skpar.core.objectives.ObjKeyValuePairs method)

 	(skpar.core.objectives.ObjValues method)

 	(skpar.core.objectives.ObjWeightedSum method)

 	(skpar.core.objectives.Objective method)

 	get_bandstructure() (in module skpar.dftbutils.queryDFTB)

 	get_config() (in module skpar.core.input)

 	get_dftbp_data() (in module skpar.dftbutils.queryDFTB)

 	get_dftbp_evol() (in module skpar.dftbutils.queryDFTB)

 	get_dftbp_klines() (in module skpar.dftbutils.lattice)

 	get_effmasses() (in module skpar.dftbutils.queryDFTB)

 	get_Ek() (in module skpar.dftbutils.queryDFTB)

 	get_input() (in module skpar.core.input)

 	get_kcomp() (skpar.dftbutils.lattice.Lattice method)

 	get_klines() (in module skpar.dftbutils.querykLines)

 	get_kvec() (in module skpar.dftbutils.lattice)

 	(skpar.dftbutils.lattice.Lattice method)

 	get_kvec_abscissa() (in module skpar.dftbutils.querykLines)

 	get_labels() (in module skpar.dftbutils.queryDFTB)

 	get_logger() (in module skpar.core.utils)

 	(in module skpar.dftbutils.utils)

 	
 	get_model_data() (in module skpar.core.taskdict)

 	get_models() (in module skpar.core.objectives)

 	get_objective() (in module skpar.core.objectives)

 	get_optargs() (in module skpar.core.optimise)

 	get_parameters() (in module skpar.core.parameters)

 	get_ranges() (in module skpar.core.utils)

 	get_recipr_cell() (in module skpar.dftbutils.lattice)

 	get_refdata() (in module skpar.core.objectives)

 	get_refval() (in module skpar.core.objectives)

 	get_refval_1d() (in module skpar.core.objectives)

 	get_special_Ek() (in module skpar.dftbutils.queryDFTB)

 	get_subset_ind() (in module skpar.core.objectives)

 	get_tasklist() (in module skpar.core.tasks)

 	get_type() (in module skpar.core.objectives)

 	get_workdir() (in module skpar.core.evaluate)

 	getkLineLength() (in module skpar.dftbutils.lattice)

 	getSymPtLabel() (in module skpar.dftbutils.lattice)

 	greek() (in module skpar.dftbutils.queryDFTB)

 	greekLabels() (in module skpar.dftbutils.querykLines)

H

 	
 	halloffame (skpar.core.pso.PSO attribute)

 	
 	HEX (class in skpar.dftbutils.lattice)

I

 	
 	initialise_tasks() (in module skpar.core.tasks)

 	install

 	
 	is_monotonic() (in module skpar.core.utils)

 	(in module skpar.dftbutils.queryDFTB)

 	islistoflists() (in module skpar.core.utils)

L

 	
 	Lattice (class in skpar.dftbutils.lattice)

 	
 	len_pathsegments() (in module skpar.dftbutils.lattice)

 	license

M

 	
 	magic_plot_bs() (in module skpar.dftbutils.plot)

 	MCL (class in skpar.dftbutils.lattice)

 	
 	MCLC (class in skpar.dftbutils.lattice)

 	meff() (in module skpar.dftbutils.queryDFTB)

N

 	
 	nBestKept (skpar.core.pso.PSO attribute)

 	nelec_tags (skpar.dftbutils.queryDFTB.DetailedOut attribute)

 	
 	normalise() (in module skpar.core.utils)

 	normaliseWeights() (in module skpar.core.utils)

O

 	
 	ObjBands (class in skpar.core.objectives)

 	Objective (class in skpar.core.objectives)

 	objectives

 	ObjKeyValuePairs (class in skpar.core.objectives)

 	ObjValues (class in skpar.core.objectives)

 	
 	ObjWeightedSum (class in skpar.core.objectives)

 	optimisation

 	optimise() (skpar.core.pso.PSO method)

 	Optimiser (class in skpar.core.optimise)

 	ORC (class in skpar.dftbutils.lattice)

P

 	
 	pAcceleration (skpar.core.pso.PSO attribute)

 	Parameter (class in skpar.core.parameters)

 	parse_cmd() (in module skpar.core.taskdict)

 	(in module skpar.dftbutils.utils)

 	parse_input() (in module skpar.core.input)

 	parse_weights() (in module skpar.core.objectives)

 	parse_weights_keyval() (in module skpar.core.objectives)

 	pformat() (in module skpar.core.pso)

 	
 	pick_objectives() (skpar.core.taskdict.PlotTask method)

 	pInertia (skpar.core.pso.PSO attribute)

 	plot_bs() (in module skpar.dftbutils.plot)

 	plot_fitmeff() (in module skpar.dftbutils.queryDFTB)

 	PlotTask (class in skpar.core.taskdict)

 	prepare_for_plotsave() (in module skpar.core.taskdict)

 	PSO (class in skpar.core.pso)

 	pso_args() (in module skpar.core.pso)

R

 	
 	reference

 	relerr() (in module skpar.core.evaluate)

 	report() (skpar.core.optimise.Optimiser method)

 	(skpar.core.pso.PSO method)

 	
 	report_stats() (in module skpar.core.pso)

 	repr_lattice() (in module skpar.dftbutils.lattice)

 	RHL (class in skpar.dftbutils.lattice)

S

 	
 	set_axes() (in module skpar.dftbutils.plot)

 	set_mplrcpar() (in module skpar.dftbutils.plot)

 	set_objectives() (in module skpar.core.objectives)

 	set_xylimits() (in module skpar.dftbutils.plot)

 	SKPAR (class in skpar.core.skpar)

 	skpar.core.evaluate (module)

 	skpar.core.input (module)

 	skpar.core.objectives (module)

 	skpar.core.optimise (module)

 	skpar.core.parameters (module)

 	skpar.core.pso (module)

 	skpar.core.skpar (module)

 	
 	skpar.core.taskdict (module)

 	skpar.core.tasks (module)

 	skpar.core.utils (module)

 	skpar.dftbutils.lattice (module)

 	skpar.dftbutils.plot (module)

 	skpar.dftbutils.queryDFTB (module)

 	skpar.dftbutils.querykLines (module)

 	skpar.dftbutils.utils (module)

 	subpackages and modules

 	substitute_parameters() (in module skpar.core.taskdict)

 	substitute_template() (in module skpar.core.parameters)

 	summarise() (skpar.core.objectives.Objective method)

T

 	
 	Task (class in skpar.core.tasks)

 	tasks

 	TET (class in skpar.dftbutils.lattice)

 	
 	toolbox (skpar.core.pso.PSO attribute)

 	tutorials

 	typedict (skpar.core.parameters.Parameter attribute)

U

 	
 	update_parameters() (in module skpar.core.parameters)

 	
 	update_template() (in module skpar.core.parameters)

W

 	
 	wrapper_PlotTask() (in module skpar.core.taskdict)

 _images/bs_2_0-0.png
FEAYNS /L
NP e N

IRV a%
L AN

N\® ‘Abisu3

_images/fakebands.png
1.0

0.5

0.0

-1.0

135 =05 o0 05 10

k

_images/fakebandsplot_0-0.png
10 fakebandsplot (0-0)

nav.xhtml

 Table of Contents

 		
 Welcome to SKPAR’s documentation!

 		
 About

 		
 Conceptual Overview

 		
 Implementation Overview

 		
 Extensions

 		
 Install

 		
 Dependencies

 		
 Test

 		
 Commands

 		
 skpar

 		
 dftbutils

 		
 dftbutils bands

 		
 dftbutils set

 		
 Tutorials

 		
 Tutorial 1 – Polynomial Fitting

 		
 Input YAML file

 		
 What is happening?

 		
 Tutorial 2 – Optimisation of electronic parameters in DFTB

 		
 Fitting to experimental data

 		
 Fitting to DFT and experimental data

 		
 Tutorial 3 – Opitmisation of repulsive potentials in DFTB

 		
 Input File Reference

 		
 Tasks

 		
 Set Tasks

 		
 Run Tasks

 		
 Get Tasks

 		
 Plot Tasks

 		
 Objectives

 		
 Overview of Objectives Declaration

 		
 Details of Objective Declaration

 		
 Reference Data And Objective Types

 		
 Optimisation

 		
 Cost function

 		
 Optimisation Algorithm

 		
 Parameter declaration

 		
 References

 		
 Executables

 		
 Configuration

 		
 Subpackage/module Reference

 		
 core sub-package modules

 		
 Main Program (skpar.core.skpar)

 		
 Input handler (skpar.core.input)

 		
 Tasks (skpar.core.tasks)

 		
 Task Dictionary (skpar.core.taskdict)

 		
 Objectives (skpar.core.objectives)

 		
 Query (skpar.core.query)

 		
 Evaluator (skpar.core.evaluate)

 		
 Optimiser (skpar.core.optimise)

 		
 Parameters (skpar.core.parameters)

 		
 PSO (skpar.core.pso)

 		
 Utilities (skpar.core.utils)

 		
 dftbutils sub-package

 		
 Run BS (skpar.dftbutils.runBS)

 		
 Query DFTB (skpar.dftbutils.queryDFTB)

 		
 Query k-Lines (skpar.dftbutils.querykLines)

 		
 Lattice (skpar.dftbutils.lattice)

 		
 Plot (skpar.dftbutils.plot)

 		
 Unils (skpar.dftbutils.utils)

 		
 License

 		
 Development

 		
 External Model and Reference Database

 		
 Parallelisation

 		
 Contributors

_images/skpar.diagram--development.png
input.yaml
-
SKPAR

Database

Reference
Evaluator

Objectives/Queries

Database
Model

Cost Function

Fitness

Task Manager

Calls to

Parameters
1

Oitimiser

_images/skpar.diagram.png
] input.yaml ~N

L.~ —1 SKPAR -
Reference
Data Files

——Parameters Evaluator

Model
> (External
Executables)

Model Output
Files

_images/optimisation.flowchart.png
Generate

No

Objectives

Evaluate Collect

Yes

_images/polyfit1_0-0.png
70

60

50

40

30

20

10

10

-5

polyfit1 (0-0)

— ref
— model

10

_static/bs_2_0-0.png
FEAYNS /L
NP e N

IRV a%
L AN

N\® ‘Abisu3

_images/test_optimise_poly3.png
100

— target polynomial
g0l | ¥ W target points
—— gbest

~10 _5

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/fakebands.png
1.0

0.5

0.0

-1.0

135 =05 o0 05 10

k

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/optimisation.flowchart.png
Generate

No

Objectives

Evaluate Collect

Yes

_static/fakebandsplot_0-0.png
10 fakebandsplot (0-0)

_static/file.png

_static/polyfit1_0-0.png
70

60

50

40

30

20

10

10

-5

polyfit1 (0-0)

— ref
— model

10

_static/plus.png

_static/test_optimise_poly3.png
100

— target polynomial
g0l | ¥ W target points
—— gbest

~10 _5

_static/up-pressed.png

_static/skpar.diagram--development.png
input.yaml
-
SKPAR

Database

Reference
Evaluator

Objectives/Queries

Database
Model

Cost Function

Fitness

Task Manager

Calls to

Parameters
1

Oitimiser

_static/skpar.diagram.png
] input.yaml ~N

L.~ —1 SKPAR -
Reference
Data Files

——Parameters Evaluator

Model
> (External
Executables)

Model Output
Files

_static/up.png

